

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

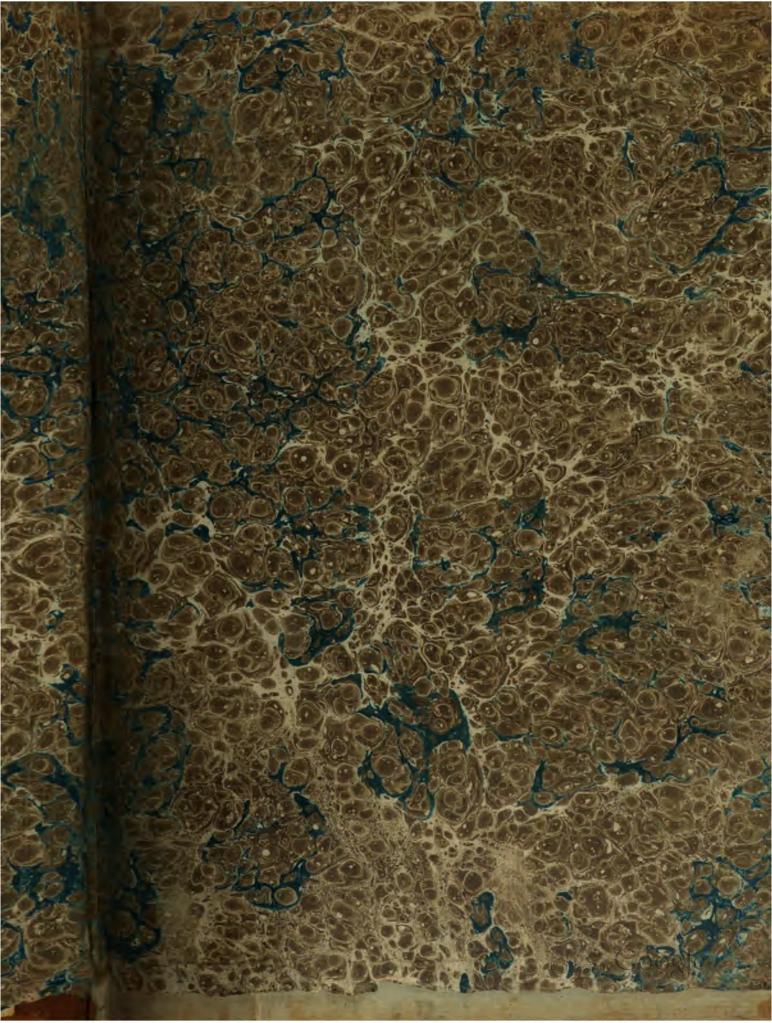
Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/



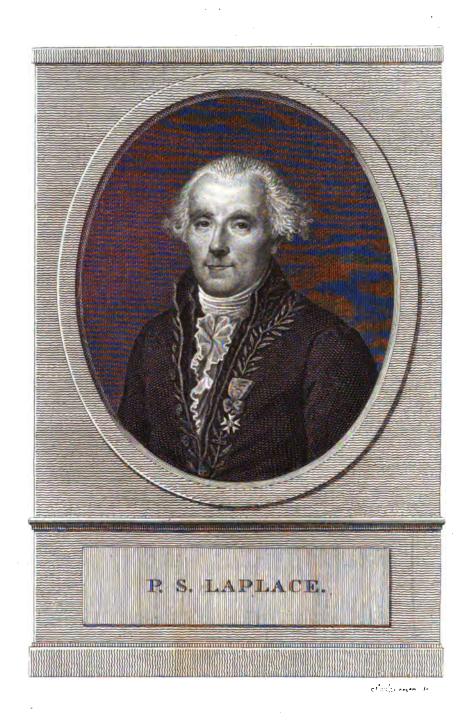
Math. 352.

Math 352

EXPOSITION

 \mathbf{DU}

SYSTÈME DU MONDE.



EXPOSITION

DU

SYSTÈME DU MONDE;

PAR M. LE COMTE LAPLACE,

Chancelier du Sénat-Conservateur, Grand-Officier de la Légion d'Honneur; Grand'Croix de l'ordre de la Réunion; Membre de l'Institut impérial et du Bureau des Longitudes de France; des Sociétés royales de Londres et de Gottingue; des Académies des Sciences de Russie, de Danemarck, de Suède, de Prusse, d'Italie, etc.

QUATRIÈME ÉDITION,

revue et augmentée par l'Auteur.

PARIS,

M¹² V² COURCIER, Imprimeur-Libraire pour les Mathématiques, quai des Augustins, n° 57.

1813.

t.

. .

The state of the s

The state of the s

(iii) All mode of the first terminations of the control of the first termination of the control of the contr

2000年1月1日 (1925年1977年) 大

And the second of the second

make the second of

8 1 11 1 1

Section 1. The Control of the Control

S 200

TABLE DES CHAPITRES.

Exposition du système du monde,				
LIVRE PREMIER.	. '			
Des mouvemens apparens des corps célestes,	2			
CHAP. I. Du mouvement diume du ciel,	ibid.			
II. Du soleil et de ses mouvemens,	5			
III. Du temps et de sa mesure,	14			
IV. Des mouvemens de la lune, de ses phases et des éclipses,	`20			
V. Des planètes, et en particulier, de Mercure et de Vénus,	. 31			
VI. De Mars,	36			
VII. De Jupiter et de ses satellites,	38			
VIII. De Saturne, de ses satellites et de son anneau,	42			
IX. D'Uranus et de ses satellites,	. 46			
X. Des planètes télescopiques, Cérès, Pallas, Junon et Vesta,	47			
XI. Du mouvement des planètes autour du soleil,	48			
XII. Des comètes,	. 5 3			
XIII. Des étoiles et de leurs mouvemens,	. 54			
XIV. De la figure de la terre, de la variation de la pesanteur à sa sur-				
face, et du système décimal des poids et mesures,	60			
XV. Du flux et du reflux de la mer, ou des variations diurnes de				
sa figure,	83			
XVI. De l'atmosphère terrestre et des réfractions astronomiques,	89			
LIVRE SECOND.				
Des mouvemens réels des corps célestes,	103			
CHAP. I. Du mouvement de rotation de la terre,	104			
II. Du mouvement de la terre autour du soleil,	107			
III. Des apparences dues au mouvement de la terre,	, 11 3			

vj TABLE DES CHAPITRES.	
IV. Des lois du mouvement des planètes autour du soleil, et d	l e
	pag. 118
V. De la figure des orbes des comètet, et des lois de leurs mouvemen	DS
autour du soleil,	127
VI. Des lois du mouvement des satellites autour de leurs planètes	3, 135
LIVRE TROISIÈME.	
Des lois du mouvement,	143
CHAP. I. Des forces, de leur composition, et de l'équilibre d'un poi matériel,	
	144
II. Du mouvement d'un point matériel, III. De l'équilibre d'un système de corps,	147
IV. De l'équilibre des fluides,	163
V. Du mouvement d'un système de corps,	1 <i>7</i> 3 1 <i>7</i> 8
v. Du mouvement d'un système ets corps,	170
LIVRE QUATRIÈME.	
De la théorie de la pesanteur universelle,	191
CHAP. I. Du principe de la pesanteur universelle,	193
II. Des perturbations du mouvement elliptique des planètes,	. 203
III. Des masses des planètes, et de la pesanteur à leur surface	, 214
IV. Des perturbations du mouvement elliptique des comètes,	220
V. Des perturbations du mouvement de la lune,	225
VI. Des perturbations des satellites de Jupiter,	243
VII. Des satellites de Saturne et d'Uranus,	25 3
VIII. De la figure de la terre et des planètes, et de la loi de	ľa
pesanteur à leur surface	. 255
IX. De la figure de l'anneau de Saturne,	266
X. Des atmosphères des corps célestes,	2 69
XI. Du flux et du reflux de la mer,	272
XII. De la stabilité de l'équilibre des mers,	2 8 9
XIII. Des oscillations de l'atmosphère,	291
XIV. De la précession des équinoxes, et de la nutation de l'axe d	
la terre,	øg6
XV. De la libration de la lune,	302
XVI. Des mouvemens propres des étoiles,	306
XVII. Réflexions sur la loi de la pesanteur universelle,	3 08
XVIII. De l'attraction meléculaire,	315

T.	AI	3L	E	DH	S	CH	A	Pl	T	'R	ES	3.
----	----	----	---	----	---	----	---	----	---	----	----	----

vij

LIVRE CINQUIÈME.

Précis de l'histoire de l'Astronomie, pag.	358
CHAP. I. De l'Astronomie ancienne, jusqu'à la fondation de l'école	
d'Alexandrie ,	3 60
II. De l'Astronomie, depuis la fondation de l'école d'Alexandrie jus-	
qu'aux Arabes ,	372
III. De l'Astronomie, depuis Ptolémée jusqu'à son renouvellement	
en Europe,	386
IV. De l'Astronomie dans l'Europe moderne,	39 3
V. De la découverte de la pesanteur universelle,	413
VI. Considérations sur le système du monde, et sur les progrès futurs	
de l'Astronomie ,	427
Note première,	449
Note II,	451
Note III,	462
Note IV,	453
Note V,	455
Note VI.	457

FIN DE LA TABLE

AVERTISSEMENT.

J'ADOPTERAI dans cet Ouvrage, la division décimale de l'angle droit, et du jour dont je fixerai à minuit, l'origine. Je rapporterai les mesures linéaires, à la longueur du mètre, déterminée par l'arc du méridien terrestre, compris entre Dunkerque et Barcelone. Enfin je rapporterai les températures, au thermomètre à mercure, divisé en cent degrés, depuis la température de la glace fondante, jusqu'à celle de l'eau bouillante, sous une pression équivalente à celle d'une colonne de mercure, haute de soixante-seize centimètres, sur le parallèle de cinquante degrés, et à zéro de température.

EXPOSITION

DU ^

SYSTÈME DU MONDE.

Me verò primum dulces ante omnia Musæ Quarum sacra fero, ingenti perculsus amore. Accipiant, cœlique vias et sydera monstrent.

Ving. lib. 11, Georg.

DE toutes les sciences naturelles, l'Astronomie est celle qui présente le plus long enchaînement de découvertes. Il y a extrêmement loin de la première vue du ciel, à la vue générale par laquelle on embrasse aujourd'hui les états passés et futurs du système du monde. Pour y parvenir, il a fallu observer les astres pendant un grand nombre de siècles; reconnaître dans leurs apparences, les mouvemens réels de la terre; s'élever aux lois des mouvemens planétaires, et de ces lois, au principe de la pesanteur universelle; redescendre enfin de ce principe, à l'explication complète de tous les phénomènes célestes, jusque dans leurs moindres détails. Voilà ce que l'esprit humain a fait dans l'Astronomie. L'exposition de ces découvertes et de la manière la plus simple dont elles ont pu naître et se succéder, aura le double avantage d'offrir un grand ensemble de vérités importantes, et la vraie méthode qu'il faut suivre dans la recherche des lois de la nature. C'est l'objet que je me suis proposé dans cet Ouyrage.

LIVRE PREMIER.

DES MOUVEMENS APPARENS DES CORPS CÉLESTES.

CHAPITRE PREMIER.

Du mouvement diurne du ciel.

Si pendant une belle nuit, et dans un lieu dont l'horizon soit à découvert, on suit avec attention le spectacle du ciel; on le voit changer à chaque instant. Les étoiles s'élèvent ou s'abaissent; quelques-unes commencent à se montrer vers l'orient, d'autres disparaissent vers l'occident; plusieurs, telles que l'étoile polaire, et les étoiles de la grande Ourse, n'atteignent jamais l'horizon dans nos climats. Dans ces mouvemens divers, la position respective de tous ces astres reste la même: ils décrivent des cercles d'autant plus petits, qu'ils sont plus près d'un point que l'on conçoit immobile. Ainsi le ciel paraît tourner sur deux points fixes nommés par cette raison, pôles du monde; et dans ce mouvement, il emporte le système entier des astres. Le pôle élevé sur notre horizon, est le pôle boréal ou septentrional: le pôle opposé que l'on imagine au-dessous de l'horizon, se nomme pôle austral ou méridional.

Déjà plusieurs questions intéressantes se présentent à résoudre. Que deviennent pendant le jour, les astres que nous voyons durant la nuit? D'où viennent ceux qui commencent à paraître? Où vont ceux qui disparaissent? L'examen attentif des phénomènes, fournit des réponses simples à ces questions. Le matin, la lumière des

étoiles s'affaiblit à mesure que l'aurore augmente : le soir, elles deviennent plus brillantes à mesure que le crépuscule diminue; ce n'est donc point parce qu'elles cessent de luire, mais parce qu'elles sont effacées par la vive lumière des crépuscules et du soleil, que nous cessons de les apercevoir. L'heureuse invention du télescope nous a mis à portée de vérifier cette explication, en nous faisant voir les étoiles, au moment même où le soleil est le plus élevé. Celles qui sont assez près du pôle, pour ne jamais atteindre l'horizon, sont constamment visibles. Quant aux étoiles qui commencent à se montrer à l'orient, pour disparaître à l'occident; il est naturel de penser qu'elles continuent de décrire sous l'horizon, le cercle qu'elles ont commencé à parcourir au-dessus, et dont l'horizon nous cache la partie inférieure. Cette vérité devient sensible, quand on s'avance vers le nord : les cercles des étoiles situées vers cette partie du monde, se dégagent de plus en plus de dessous l'horizon : ces étoiles cessent enfin de disparaître , tandis que d'autres étoiles situées au midi, deviennent pour toujours invisibles. On observe le contraire en avançant vers le midi : des étoiles qui demeuraient constamment sur l'horizon, se lèvent et se couchent alternativement; et de nouvelles étoiles auparavant invisibles, commencent à paraître. La surface de la terre n'est donc pas ce qu'elle nous semble, un plan sur lequel la voûte céleste est appuyée. C'est une illusion que les premiers observateurs ne tardèrent pas à rectifier par des considérations analogues aux précédentes : ils reconnurent bientôt que le ciel enveloppe de tous côtés la terre, et que les étoiles y brillent sans cesse, en décrivant, chaque jour, leurs différens cercles. On verra dans la suite, l'astronomie souvent occupée à corriger de semblables illusions, et à reconnaître les objets réels dans leurs trompeuses apparences.

Pour se former une idée précise du mouvement des astres; on conçoit par le centre de la terre et par les deux pôles du monde, un axe autour duquel tourne la sphère céleste. Le grand cercle perpendiculaire à cet axe, s'appelle équateur: les petits cercles que les étoiles décrivent parallèlement à l'équateur, en vertu de leur mouvement diurne, se nomment parallèles. Le zénith d'un observateur, est le point du ciel que sa verticale va

rencontrer: le nadir est le point directement opposé. Le méridien est le grand cercle qui passe par le zénith et les pôles: il partage en deux également, l'arc décrit par les étoiles sur l'horizon, et lorsqu'elles l'atteignent, elles sont à leur plus grande ou à leur plus petite hauteur. Enfin l'horizon est le grand cercle perpendiculaire à la verticale, ou parallèle à la surface de l'eau stagnante dans le lieu de l'observateur.

La hauteur du pôle tient le milieu entre la plus grande et la plus petite hauteur des étoiles qui ne se couchent jamais, ce qui donne un moyen facile de la déterminer; or en s'ayançant directement vers le pôle, on le voit s'élever à fort peu près proportionnellement à l'espace parcouru; la surface de la terre est donc convexe, et sa figure est peu différente d'une sphère. La courbure du globe terrestre est sensible à la surface des mers: le navigateur, en approchant des côtes, aperçoit d'abord leurs points les plus élevés, et découvre ensuite successivement les parties inférieures que lui dérobait la convexité de la terre. C'est encore à raison de cette courbure, que le soleil à son lever, dore le sommet des montagnes avant que d'éclairer les plaines.

CHAPITRE II.

Du Soleil et de ses mouvemens.

Lous les astres participent au mouvement diurne de la sphére céleste; mais plusieurs ont des mouvemens propres qu'il est important de suivre, parce qu'ils peuvent seuls nous conduire à la connaissance du vrai système du monde. De même que pour mesurer l'éloignement d'un objet, on l'observe de deux positions différentes; ainsi pour découvrir le mécanisme de la nature, il faut la considérer sous divers points de vue, et observer le développement de ses lois, dans les changemens du spectacle qu'elle nous présente. Sur la terre, nous faisons varier les phénomènes par des expériences: dans le ciel, nous déterminons avec soin tous ceux que nous offrent les mouvemens célestes. En interrogeant ainsi la nature, et soumettant ses réponses à l'analyse; nous pouvons par une suite d'inductions bien ménagées, nous élever aux phénomènes généraux dont tous les faits particuliers dérivent. C'est à découyrir ces grands phénomènes, et à les réduire au plus petit nombre possible, que doivent tendre nos efforts; car les causes premières et la nature intime des êtres nous seront éternellement inconnues.

Le soleil a un mouvement propre dirigé en sens contraire du mouvement diurne. On reconnaît ce mouvement, par le spectacle du ciel pendant les nuits, spectacle qui change et se renouvelle avec les saisons. Les étoiles situées sur la route du soleil, et qui se couchent un peu après lui, se perdent bientôt dans sa lumière, et reparaissent ensuite avant son lever; cet astre s'avance donc vers elles, d'occident en orient. C'est ainsi que l'on a suivi longtemps son mouvement propre, qui maintenant peut être déterminé avec une grande précision, en observant chaque jour, la hauteur

méridienne du soleil, et le temps qui s'écoule entre son passage et ceux des étoiles, au méridien. Ces observations donnent les mouvemens propres du soleil, dans le sens du méridien et dans le sens des parallèles; et la résultante de ces mouvemens est le vrai mouvement de cet astre autour de la terre. On a trouvé de cette manière, que le soleil se meut dans un orbe que l'on nomme écliptique, et qui, au commencement de 1801, était incliné de 26°,07315 à l'équateur.

C'est à l'inclinaison de l'écliptique sur l'équateur, qu'est due la différence des saisons. Lorsque le soleil atteint par son mouvement annuel, l'équateur; il le décrit à fort peu près en vertu de son mouvement diurne, et ce grand cercle étant partagé en deux également par tous les horizons, le jour est alors égal à la nuit, sur toute la terre. On a nommé par cette raison, équinoxes, les points d'intersection de l'équateur avec l'écliptique. A mesure que le soleil, en partant de l'équinoxe du printemps, s'avance dans son orbe, ses hauteurs méridiennes sur notre horizon, croissent de plus en plus : l'arc visible des parallèles qu'il décrit, chaque jour, augmente sans cesse, et fait croître la durée des jours, jusqu'à ce que le soleil parvienne à sa plus grande hauteur. A cette époque, le jour est le plus long de l'année; et comme vers le maximum, les variations de la hauteur méridienne du soleil sont insensibles, le soleil, à ne considérer que cette hauteur dont dépend la durée du jour, paraît stationnaire; ce qui a fait nommer solstice d'été, ce point du maximum. Le parallèle que le soleil décrit alors est le tropique d'été. Cet astre redescend ensuite vers l'équateur qu'il traverse de nouveau dans l'équinoxe d'automne; et de là, il parvient à son minimum de hauteur, ou au solstice d'hiver. Le parallèle décrit alors par le soleil, est le tropique d'hiver; et le jour qui lui répond, est le plus court de l'année. Parvenu à ce terme, le soleil remonte vers l'équateur et revient, à l'équinoxe du printemps, recommencer la même carrière.

Telle est la marche constante du soleil et des saisons. Le printemps est l'intervalle compris entre l'équinoxe du printemps et le solstice d'été: l'intervalle de ce solstice à l'équinoxe d'automne forme l'été: l'intervalle de l'équinoxe d'automne au solstice d'hiver, forme l'automne: enfin l'hiver est l'intervalle du solstice d'hiver à l'équinoxe du printemps.

La présence du soleil sur l'horizon, étant la cause de la chaleur; il semble que la température devrait être la même en été qu'au printemps, et dans l'hiver qu'en automne. Mais la température n'est pas un effet instantané de la présence du soleil : elle est le résultat de son action long-temps continuée. Elle n'atteint son maximum dans le jour, qu'après la plus grande hauteur de cet astre sur l'horizon : elle n'y parvient dans l'année, qu'après la plus grande hauteur solsticiale du soleil.

Les divers climats offrent des variétés remarquables, que nous allons suivre de l'équateur aux pôles. A l'équateur, l'horizon coupe en deux parties égales, tous les parallèles; le jour y est donc constamment égal à la nuit. Le soleil s'élève à midi, jusqu'au zénith, dans les équinoxes. Les hauteurs méridiennes de cet astre dans les solstices, sont les plus petites et égales au complément de l'inclinaison de l'écliptique à l'équateur : les ombres solaires ont alors des directions opposées, ce qui n'arrive point dans nos climats où elles sont toujours à midi, dirigées vers le nord; il y a donc à proprement parler, deux hivers et deux étés, chaque année, sous l'équateur. La même chose a lieu dans tous les pays où la hauteur du pôle est moindre que l'obliquité de l'écliptique. Au-delà, le soleil ne s'élevant jamais au zénith, il n'y a plus qu'un hiver et un été dans l'année : le plus long jour augmente, et le plus court diminue, à mesure que l'on avance vers le pôle; et lorsque le zénith n'en est éloigné que d'un angle égal à l'obliquité de l'écliptique, le soleil ne se couche point au solstice d'été, il ne se lève point au solstice d'hiver. Plus près du pôle encore, le temps de sa présence et celui de son absence sur l'horizon vers les solstices, surpassent plusieurs jours et même plusieurs mois. Enfin sous le pôle, l'horizon étant l'équateur même, le soleil est toujours au-dessus, quand il est du même côté de l'équateur que le pôle: il est constamment au-dessous, quand il est de l'autre côté de l'équateur; il n'y a donc qu'un jour et une nuit dans l'année.

Suivons plus particulièrement la marche du soleil. D'abord on observe une inégalité dans les intervalles qui séparent les équinoxes

et les solstices: il s'écoule environ huit jours de plus, de l'équinoxe du printemps à celui d'automne, que de ce dernier équinoxe à celui du printemps; le mouvement du soleil n'est donc pas uniforme, Des observations précises et multipliées ont fait connaître qu'il est le plus rapide dans un point de l'orbite solaire situé vers le solstice d'hiver, et qu'il est le plus lent dans le point opposé de l'orbite, vers le solstice d'été. Le soleil décrit par jour, 1°,1327 dans le premier point, et seulement 1°,0591 dans le second: ainsi pendant le cours de l'année, son mouvement journalier varie en plus et en moins, de trois cent trente-six dix-millièmes de sa valeur moyenne.

Cette variation produit, en s'accumulant, une inégalité très-sensible dans le mouvement du soleil. Pour en déterminer la loi, et généralement pour avoir celles de toutes les inégalités périodiques, on peut considérer que les sinus et les cosinus des angles, redevenant les mêmes à chaque circonférence dont ces angles augmentent, ils sont propres à représenter ces inégalités. En exprimant donc de cette manière, toutes les inégalités des mouvemens célestes, il n'y a de difficulté qu'à les démêler entre elles, et à déterminer les angles dont elles dépendent. L'inégalité que nous considérons, se rétablissant à chaque révolution solaire; il est naturel de la faire dépendre du mouvement du soleil, et de ses multiples. On trouve ainsi qu'en l'exprimant dans une série de sinus dépendans de ce mouvement, elle se réduit à fort peu près à deux termes dont le premier est proportionnel au sinus de la distance moyenne angulaire du soleil, au point de son orbite où sa vîtesse est la plus grande, et dont le second, environ quatre-vingt-quinze fois moindre que le premier, est proportionnel au sinus du double de cette distance.

Les mesures du diamètre apparent de cet astre nous prouvent que sa distance à la terre est variable, comme sa vîtesse angulaire. Ce diamètre augmente et diminue suivant la même loi que cette vîtesse, mais dans un rapport deux fois moindre. Lorsque la vîtesse est la plus grande, ce diamètre est de 6035",7: on ne l'observe que de 5836",3, lorsque cette vîtesse est la plus petite; ainsi sa grandeur moyenne est de 5936",0.

La distance du soleil à la terre étant réciproque à son diamètre apparent, son accroissement suit la même loi que la diminution

de ce diamètre. On nomme périgée, le point de l'orbite, où le soleil est le plus près de la terre; et apogée, le point opposé où cet astre en est le plus éloigné. C'est dans le premier de ces points, que le soleil a le plus grand diamètre apparent et la plus grande vîtesse : dans le second point, son diamètre apparent et sa vîtesse sont à leur minimum.

Il suffit pour diminuer le mouvement apparent du soleil, de l'éloigner de la terre. Mais si cette cause produisait seule la variation du mouvement solaire, et si la vîtesse réelle du soleil était constante; sa vîtesse apparente diminuerait dans le même rapport que son diamètre apparent. Elle diminue dans un rapport deux fois plus grand; il y a donc un ralentissement réel dans le mouvement de cet astre, lorsqu'il s'éloigne de la terre. Par l'effet composé de ce ralentissement et de l'augmentation de la distance, son mouvement angulaire diminue comme le carré de la distance augmente, ensorte que son produit par ce carré, est à fort peu près constant. Toutes les mesures du diamètre apparent du soleil, comparées aux observations de son mouvement journalier, confirment ce résultat.

Imaginons par les centres du soleil et de la terre une droite que nous nommerons rayon vecteur du soleil : il est facile de voir que le petit secteur ou l'aire tracée dans un jour par ce rayon, autour de la terre, est proportionnelle au produit du carré de ce rayon, par le mouvement journalier apparent du soleil. Ainsi, cet aire est constante, et l'aire entière tracée par le rayon vecteur, à partir d'un rayon fixe, croît comme le nombre des jours écoulés depuis l'époque où le soleil était sur ce rayon; les aires décrites par son rayon vecteur, sont donc proportionnelles au temps. Un rapport aussi simple entre le mouvement du soleil et sa distance au foyer de son mouvement, doit être admis comme une loi fondamentale de sa théorie, du moins jusqu'à ce que les observations nous obligent de le modifier.

Si d'après les données précédentes, on marque de jour en jour, la position et la longueur du rayon vecteur de l'orbe solaire, et que l'on fasse passer une courbe par les extrémités de tous ces rayons; on verra que cette courbe est un peu alongée dans le sens de la droite qui, passant par le centre de la terre, joint les points de la plus grande et de la plus petite distance du soleil. Sa ressemblance avec l'ellipse ayant fait naître la pensée de les comparer entre elles, on a reconnu leur identité; d'où l'on a conclu que l'orbe solaire est une ellipse dont le centre de la terre occupe un des foyers.

L'ellipse est une de ces courbes fameuses dans la Géométrie ancienne et moderne, sous le nom de sections coniques. Il est facile de la décrire, en fixant à deux points invaviables que l'on appelle foyers, les extrémités d'un fil tendu sur un plan, par une pointe qui glisse le long de ce fil. L'ellipse tracée par la pointe dans ce mouvement, est visiblement alongée dans le sens de la droite qui joint les foyers, et qui, prolongée de chaque côté jusqu'à la courbe, forme le grand axe dont la longueur est la même que celle du fil. Le petit axe est la droite menée par le centre, perpendiculairement au grand axe, et prolongée de chaque côté jusqu'à la courbe : la distance du centre à l'un des foyers, est l'excentricité de l'ellipse. Lorsque les deux soyers sont réunis au même point, l'ellipse est un cercle : en les éloignant, elle s'alonge de plus en plus; et si leur distance mutuelle devenant infinie, la distance du foyer au sommet le plus voisin de la courbe, reste finie, l'ellipse devient une parabole.

L'ellipse solaire est peu différente d'un cercle; car l'excès de la plus grande sur la moyenne distance du soleil à la terre, n'est, comme on l'a vu, que cent soixante-huit dix-millièmes de cette distance. Cet excès est l'excentricité elle-même, dans laquelle les observations indiquent une diminution fort lente et à peine sensible dans l'intervalle d'un siècle.

Pour avoir une juste idée du mouvement elliptique du soleil, concevons un point mu uniformément sur une circonférence dont le centre soit celui de la terre, et dont le rayon soit égal à la distance périgée du soleil : supposons de plus, que ce point et le soleil partent ensemble du périgée, et que le mouvement angulaire du point soit égal au moyen mouvement angulaire du soleil. Tandis que le rayon vecteur du point tourne uniformément autour de la terre, le rayon vecteur du soleil se meut d'une manière inégale, en formant toujours avec la distance périgée et les arcs d'ellipse,

des secteurs proportionnels aux temps. Il devance d'abord le rayon vecteur du point, et sait avec lui, un angle qui après avoir augmenté jusqu'à une certaine limite, diminue et redevient nul, quand le soleil est à son apogée. Alors, les deux rayons vecteurs coincident avec le grand axe. Dans la seconde moitié de l'ellipse, le rayon vecteur du point devance à son tour celui du soleil, et forme avec lui, des angles qui sont exactement les mêmes que dans la première moitié, à la même distance du périgée où il revient coincider avec le rayon vecteur du soleil et le grand axe de l'ellipse. L'angle dont le rayon vecteur du soleil devance celui du point, est ce que l'on nomme équation du centre. Son maximum était de 2°,13479 au commencement du siècle actuel, c'est-à-dire, au minuit commencant le premier janvier 1801. Il diminue de 52°,025 par siècle. Le mouvement angulaire du point autour de la terre, se conclut de la durée de la révolution du soleil dans son orbite. En ajoutant à ce mouvement, l'équation du centre; on a le mouvement angulaire du soleil. La recherche de cette équation est un problème intéressant d'analyse, qui ne peut être résolu que par approximation; mais le peu d'excentricité de l'orbe solaire conduit à des séries très-convergentes qu'il est facile de réduire en tables.

Le grand axe de l'ellipse solaire n'est pas fixe dans le ciel; il a relativement aux étoiles, un mouvement annuel d'environ 36",44, et dirigé dans le même sens que celui du soleil.

L'orbe solaire se rapproche insensiblement de l'équateur: on peut évaluer à 160″,85, la diminution séculaire de son obliquité sur le plan de ce grand cercle.

Le mouvement elliptique du soleil ne représente pas encore exactement les observations modernes: leur grande précision a fait apercevoir de petites inégalités dont il eût été presque impossible, par les seules observations, de reconnaître les lois. Ces inégalités sont ainsi du ressort de cette branche de l'astronomie qui redescend des causes aux phénomènes, et qui sera l'objet du quatrième Livre.

La distance du soleil à la terre, a intéressé dans tous les temps, les observateurs: ils ont essayé de la déterminer par tous les moyens que l'astronomie a successivement indiqués. Le plus naturel et le

plus simple est celui que les géomètres emploient pour mesurer la distance des objets terrestres. Des deux extrémités d'une base connue, on observe les angles que forment avec elle, les rayons visuels de l'objet; et en retranchant leur somme, de deux angles droits, on a l'angle formé par ces rayons à leur concours : cet angle est ce que l'on nomme parallaxe de l'objet dont il est facile ensuite d'avoir la distance aux extrémités de la base. En transportant cette méthode au soleil, il faut choisir la base la plus étendue que l'on puisse avoir sur la terre. Imaginons deux observateurs placés sous le même méridien, et observant à midi, la distance du centre du soleil au pôle boréal : la différence des deux distances observées sera l'angle sous lequel on verrait de ce centre, la droite qui joint les observateurs : la différence des hauteurs du pôle, donne cette droite en parties du rayon terrestre; il sera donc facile d'en conclure l'angle sous lequel on verrait du centre de soleil, le demi-diamètre de la terre. Cet angle est la parallaxe horizontale du soleil; mais il est trop petit, pour être déterminé avec précision par cette méthode qui peut seulement nous faire juger, que cet astre est au moins éloigné de neuf mille diamètres terrestres. Nous verrons dans la suite, les découvertes astronomiques fournir des moyens beaucoup plus précis pour avoir sa parallaxe, que l'on sait maintenant être à fort peu près de 27", dans sa moyenne distance à la terre; d'où il résulte que cette distance: est de 23578 rayons terrestres.

On observe à la surface du soleil, des taches noires d'une forme irrégulière et changeante. Quelquefois, elles sont nombreuses et fort étendues: on en a vu dont la largeur égalait quatre ou sinq fois celle de la terre. D'autres fois, mais rarement, le soleil paraît pur et sans taches pendant des années entières. Souvent les taches solaires sont entourées de pénombres environnées elles-mêmes de parties plus lumineuses que le reste du soleil, et au milieu desquelles on voit ces taches se former et disparaître. La nature des taches est encore ignorée; mais elles nous ont fait connaître un phénomène remarquable, celui de la rotation du soleil. Au travers des variations qu'elles éprouvent dans leur position et dans leur grandeur, on démêle des mouvemens réguliers, exactement les

mêmes que ceux des points correspondans de la surface du soleil, en supposant à cet astre, dans le sens de son mouvement autour de la terre, une rotation sur un axe presque perpendiculaire à l'écliptique. On a conclu de l'observation suivie des taches, que la durée d'une rotation entière du soleil, est d'environ vingt-cinq jours et demi, et que l'équateur solaire est incliné de huit degrés un tiers au plan de l'écliptique.

Les grandes taches du soleil sont presque toujours comprises dans une zône de sa surface, dont la largeur mesurée sur un méridien solaire, ne s'étend pas au-delà de trente-quatre degrés, de chaque côté de son équateur: on en a cependant observé à quarantequatre degrés de distance.

On aperçoit, surtout vers l'équinoxe du printemps, une faible lumière visible avant le lever, ou après le coucher du soleil, et à laquelle on a donné le nom de lumière zodiacale. Sa couleur est blanche, et sa figure apparente est celle d'un suseau dont la base s'appuie sur l'équateur solaire : tel on verrait un sphéroïde de révolution fort aplati dont le centre et le plan de l'équateur seraient les mêmes que ceux du soleil. Sa longueur paraît quelquesois soutendre un angle de plus de cent degrés. Le fluide qui nous résléchit cette lumière doit être extrêmement rare, puisque l'on voit les étoiles au travers. Suivant l'opinion la plus générale, ce fluide est l'atmosphère même du soleil; mais cette atmosphère est loin de s'étendre à d'aussi grandes distances. Nous proposerons à la fin de cet Ouvrage, quelques conjectures sur la cause jusqu'à présent ignorée, de cette lumière.

CHAPITRE III.

Du Temps et de sa mesure.

Le temps est pour nous, l'impression que laisse dans la mémoire. une suite d'événemens dont nous sommes certains que l'existence a été successive. Le mouvement est propre à lui servir de mesure; car un corps ne pouvant pas être dans plusieurs lieux à-la-fois, il ne parvient d'un endroit à un autre, qu'en passant successivement par tous les lieux intermédiaires. Si à chaque point de la ligne qu'il décrit, il est animé de la même force; son mouvement est uniforme, et les parties de cette ligne peuvent mesurer le temps employé à les parcourir. Quand un pendule, à la fin de chaque oscillation, se retrouve dans des circonstances parfaitement semblables; les durées de ses oscillations sont les mêmes, et le temps peut se mesurer par leur nombre. On peut aussi employer à cette mesure, les révolutions de la sphère céleste, dans lesquelles tout paraît égal: mais on est unanimement convenu de faire usage pour cet objet, du mouvement du soleil dont les retours au méridien et au même équinoxe, ou au même solstice, forment les jours et les années.

Dans la vie civile, le jour est l'intervalle de temps qui s'écoule depuis le lever jusqu'au coucher du soleil : la nuit est le temps pendant lequel le soleil reste au-dessous de l'horizon. Le jour astronomique embrasse toute la durée de la révolution diurne : c'est le temps compris entre deux midis ou entre deux minuits consécutifs. Il surpasse la durée d'une révolution du ciel, qui forme le jour sidéral; car si le soleil traverse le méridien au même instant qu'une étoile; le jour suivant, il y reviendra plus tard en vertu de son mouvement propre par lequel il s'ayance d'occident en orient; et

dans l'espace d'une année, il passera une fois de moins que l'étoile, au méridien. On trouve ainsi qu'en prenant pour unité, le jour moyen astronomique, la durée du jour sidéral est de 0,99726957.

Les jours astronomiques ne sont pas égaux : deux causes, l'inégalité du mouvement propre du soleil et l'obliquité de l'écliptique, produisent leurs différences. L'effet de la première cause est évident : ainsi au solstice d'été, vers lequel le mouvement du soleil est le plus lent, le jour astronomique approche plus du jour sidéral, qu'au solstice d'hiver; où ce mouvement est le plus rapide.

Pour concevoir l'effet de la seconde cause; il faut observer que l'excès du jour astronomique sur le jour sidéral, n'est dû qu'au mouvement propre du soleil, rapporté à l'équateur. Si par les extrémités du petit arc que le soleil décrit sur l'écliptique dans un jour, et par les pôles du monde, on imagine deux grands cercles de la sphère céleste; l'arc de l'équateur, qu'ils interceptent, est le mouvement journalier du soleil rapporté à l'équateur, et le temps que cet arc met à traverser le méridien, est l'excès du jour astronomique sur le jour sidéral; or il est visible que dans les équinoxes, l'arc de l'équateur est plus petit que l'arc correspondant de l'écliptique, dans le rapport du cosinus de l'obliquité de l'écliptique, au rayon au cosinus de la même obliquité; le jour astronomique est donc diminué dans le premier cas, et augmenté dans le second.

Pour avoir un jour moyen indépendant de ces causes; on imagine un second soleil mu uniformément sur l'écliptique, et traversant toujours aux mêmes instans que le vrai soleil, le grand axe de l'orbe solaire, ce qui fait disparaître l'inégalité du mouvement propre du soleil. On fait ensuite disparaître l'effet de l'obliquité de l'écliptique, en imaginant un troisième soleil passant par les équinoxes, aux mêmes instans que le second soleil, et mu sur l'équateur, de manière que les distances angulaires de ces deux soleils, à l'équinoxe du printemps, soient constamment égales entre elles. L'intervalle compris entre deux retours consécutifs de ce troisième soleil, au méridien, forme le jour moyen astronomique. Le temps moyen se mesure par le nombre de ces retours, et le temps vrai se mesure par le nombre des retours du vrai soleil, au méridien. L'arc de

l'équateur, intercepté entre deux méridiens menés par les centres du vrai soleil et du troisième soleil, et réduit en temps, à raison de la circonférence entière pour un jour, est ce que l'on nomme équation du temps.

Le jour se divise en vingt-quatre heures, et l'on fixe à minuit son origine. L'heure est divisée en 60 minutes, la minute en 60 secondes, la seconde en 60 tierces, etc. Mais la division du jour en dix heures, de l'heure en cent minutes, de la minute en cent secondes, est beaucoup plus commode pour les usages astronomiques, et nous l'adopterons dans cet Ouvrage.

Le second soleil que nous venons d'imaginer, détermine par ses retours à l'équateur et aux tropiques, les équinoxes et les solstices moyens. La durée de ses retours au même équinoxe ou au même solstice, forme l'année tropique dont la grandeur actuelle est de 3651,2422640. L'observation a fait connaître que le soleil met plus de temps à revenir aux mêmes étoiles. L'année sidérale est l'intervalle compris entre deux de ces retours consécutifs: elle surpasse l'année tropique, de 01,014119. Ainsi les équinoxes ont sur l'écliptique, un mouvement rétrograde ou contraire au mouvement propre du soleil, par lequel ils décrivent, chaque année, un arc égal au moyen mouvement de cet astre dans l'intervalle de 01,014119, et par conséquent, de 154",63. Ce mouvement n'est pas exactement le même dans tous les siècles, ce qui rend un peu inégale, la longueur de l'année tropique: elle est maintenant de 13" environ plus courte qu'au temps d'Hipparque.

C'est à l'un des équinoxes ou à l'un des solstices, qu'il convient de commencer l'année. Son origine placée au solstice d'été ou à l'équinoxe d'automne, partagerait et répartirait sur deux années consécutives, les mêmes opérations et les mêmes travaux : elle aurait ainsi les inconvéniens du jour commençant à midi, suivant l'ancien usage des astronomes. L'équinoxe du printemps, époque de la renaissance de la nature, semble devoir être pareillement celle du renouvellement de l'année; mais il est aussi naturel de la faire commencer au solstice d'hiver, que l'antiquité célébra comme l'époque de la renaissance du soleil, et qui sous le pôle, est la milieu de la grande nuit de l'année,

Si l'année civile était constamment de 365 jours; son commencement anticiperait sans cesse sur celui de la véritable année tropique, et il parcourrait en rétrogradant, les diverses saisons, dans une période d'environ 1508 ans. Mais cette année qui fut autrefois en usage dans l'Égypte, ôte au calendrier, l'avantage d'attacher les mois et les fêtes aux mêmes saisons, et d'en faire des époques remarquables pour l'agriculture. On conserverait cet avantage précieux aux habitans des campagnes, en considérant l'origine de l'année, comme un phénomène astronomique que l'on fixerait par le calcul, au minuit qui précède le solstice ou l'équinoxe; et c'est ce que l'on a fait en France, à la fin du dernier siècle. Mais alors, les années bissextiles ou de 366 jours, s'intercalant suivant une loi très-compliquée; il serait difficile de décomposer en jours, un nombre quelconque d'années, ce qui répandrait de la confusion sur l'histoire et sur la chronologie. D'ailleurs, l'origine de l'année, que l'on a toujours besoin de connaître d'avance, deviendrait incertaine et arbitraire, lorsqu'elle approcherait de minuit, d'une quantité moindre que l'erreur des tables solaires. Enfin, l'ordre des bissextiles changerait avec les méridiens, ce qui formerait un obstacle à l'adoption si desirable d'un même calendrier par les différens peuples. En voyant en effet, chaque peuple compter de son principal observatoire, les longitudes géographiques; peut-on croire qu'ils s'accorderont tous à faire dépendre d'un même méridien, le commencement de leur année? Il faut donc abandonner ici la nature, et recourir à un mode d'intercalation artificiel, mais régulier et commode. Le plus simple de tous, est celui que Jules-César introduisit dans le calendrier romain, et qui consiste à intercaler une bissextile, tous les quatre ans. Mais si la courte durée de la vie suffit pour écarter sensiblement l'origine des années égyptiennes. du solstice ou de l'équinoxe; il ne faut qu'un petit nombre de siècles, pour opérer le même déplacement dans l'origine des années juliennes; ce qui rend indispensable, une intercalation plus composée. Dans l'onzième siècle, les Perses en adoptèrent une, remarquable par son exactitude. Elle se réduit à rendre la quatrième année, bissextile sept fois de suite, et à ne faire ce changement la huitième fois, qu'à la cinquième année. Cela suppose la longueur de l'année tropique.

de 365i 🚉, plus grande seulement de 01,0001602, que l'année déterminée par les observations; ensorte qu'il faudrait un grand nombre de siècles, pour déplacer sensiblement l'origine de l'année civile. Le mode d'intercalation du calendrier grégorien est un peu moins exact; mais il donne plus de facilité pour réduire en jours, les années et les siècles, ce qui est l'un des principaux objets du calendrier. Il consiste à intercaler une bissextile, tous les quatre ans, en supprimant la bissextile de la fin de chaque siècle, pour la rétablir à la fin du quatrième. La longueur de l'année que celà suppose, est de 365i $\frac{97}{400}$, ou de 365i,242500, plus grande que la véritable, de 0,000236. Mais si, en suivant l'analogie de ce mode d'intercalation, on supprime encore une bissextile, tous les quatre mille ans, ce qui les réduit à 969 dans cet intervalle; la longueur de l'année sera de 365i, $\frac{369}{4000}$; ou de 365i, 242250, ce qui approche tellement de la longueur 365,242264 déterminée par les observations, que l'on peut négliger la différence, vu la petite incertitude que les observations elles-mêmes laissent sur la vraie longueur de l'année qui d'ailleurs, n'est pas rigoureusement constante.

La division de l'année en douze mois, est fort ancienne et presque universelle. Quelques peuples ont supposé les mois égaux et de trente jours, et ils ont complété l'année, par l'addition d'un nombre suffisant de jours complémentaires. D'autres peuples ont embrassé l'année entière dans les douze mois, en les rendant inégaux. Le système des mois de trente jours conduit naturellement à leur division en trois décades. Cette période donne la facilité de retrouver à chaque instant, le quantième du mois. Mais à la fin de l'année, les jours complémentaires troublent l'ordre de choses, attaché aux divers jours de la décade, ce qui nécessite alors des mesures administratives embarrassantes. On obvieà cet inconvénient, par l'usage d'une petite période indépendante des mois et des années: telle est la semaine qui depuis la plus haute antiquité dans laquelle se perd son origine, circule sans interruption à travers les siècles, en se mélant aux calendriers successifs des différens peuples. Il est trèsremarquable qu'elle se trouve identiquement la même sur toute la terre, soit relativement à la dénomination de ses jours, réglés sur le plus ancien système d'astronomie, soit par rapport à leur correspondance au même instant physique. C'est peut-être le monument le plus ancien et le plus incontestable des connaissances humaines: il paraît indiquer une source commune d'où elles se sont répandues; mais le système astronomique qui lui sert de base, est une preuve de leur imperfection à cette origine.

Il était facile, lorsqu'on réforma le calendrier grégorien, de fixer au solstice d'hiver, le commencement de l'année; ce qui aurait fait concourir l'origine de chaque saison, avec le commencement d'un mois. Il était facile encore de rendre plus régulière, la longueur des mois, en donnant vingt-neufjours à celui de février dans les années communes, et trente jours dans les bissextiles, et en faisant les autres mois, alternativement de trente-un et de trente jours : il eût été commode de les désigner tous par leur rang ordinal. En corrigeant ensuite, comme on vient de le dire, l'intercalation adoptée ; le calendrier grégorien n'eût laissé presque rien à desirer. Mais convient-il de lui donner ce degré de perfection? Il me semble qu'il n'en résulterait pas assez d'avantages, pour compenser les embarras qu'un pareil changement introduirait dans nos habitudes, dans nos rapports avec les autres peuples, et dans la chronologie déjà trop compliquée par la multitude des ères. Si l'on considère que ce calendrier est maintenant celui de presque toutes les nations d'Europe et d'Amérique, et qu'il a fallu deux siècles et toute l'influence de la religion, pour lui procurer cette universalité; on sentira qu'il importe de lui conserver un aussi précieux avantage, aux dépens même d'une perfection qui ne porte pas sur des points essentiels. Car le principal objet d'un calendrier, est d'offrir un moyen simple d'attacher les événemens à la série des jours; et par un mode facile d'intercalation, de fixer dans la même saison, l'origine de l'année ; conditions qui sont bien remplies par le calendrier grégorien.

De la réunion de cent années, on a formé le siècle, la plus longue période employée jusqu'ici dans la mesure du temps; car l'intervalle qui nous sépare des plus anciens événemens connus, n'en exige pas encore de plus grandes.

CHAPITRE IV.

Des mouvemens de la Lune, de ses phases et des éclipses.

CELUI de tous les astres, qui nous intéresse le plus après le soleil, est la lune dont les phases offrent une division du temps si remarquable, qu'elle a été primitivement en usage chez tous les peuples. La lune a, comme le soleil, un mouvement propre d'occicident en orient. La durée de sa révolution sidérale était de 27i,321660892, au commencement de ce siècle : cette durée n'est pas toujours la même, et la comparaison des observations modernes avec les anciennes, prouve incontestablement une accélération dans le moyen mouvement de la lune. Cette accélération encore peu sensible depuis la plus ancienne éclipse qui nous soit parvenue, se développera par la suite des temps. Mais ira-t-elle en croissant sans cesse, ou s'arrêtera-t-elle pour se changer en retardement? C'est ce que les observations ne peuvent apprendre qu'après un très-grand nombre de siècles. Heureusement, la découverte de sa cause, en les devançant, nous a fait connaître qu'elle est périodique. Au commencement de ce siècle, la distance moyenne angulaire de la lune, à l'équinoxe du printemps, et comptée de cet équinoxe dans le sens du mouvement propre de cet astre, était 124%,01478.

La lune se meut dans un orbe elliptique dont le centre de la terre occupe un des foyers. Son rayon vecteur trace autour de ce point, des aires à peu près proportionnelles aux temps. La moyenne distance de cet astre à la terre, étant prise pour unité, l'excentricité de son ellipse est 0,0548553, ce qui donne la plus grande équation du centre, égale à 6°,9983: elle paraît être invariable. Le périgée lunaire a un mouvement direct, c'est-à-dire, dans le sens du mouvement propre du soleil: la durée de sa révolution sidérale était, au commencement du siècle, de 3232,575614, et sa moyenne

distance angulaire à l'équinoxe du printemps était 295°,67550. Son mouvement n'est pas uniforme : il se ralentit pendant que celui de la lune s'accélère.

Les lois du mouvement elliptique sont encore loin de représenter les observations de la lune : elle est assujétie à un grand nombre d'inégalités qui ont des rapports évidens avec la position du soleil. Nous allons indiquer les trois principales.

La plus considérable et la première que l'on ait reconnue, est celle que l'on nomme évection. Cette inégalité qui dans son maximum s'élève à 1°,4452, est proportionnelle au sinus du double de la distance de la lune au soleil, moins la distance de la lune à son périgée. Dans les oppositions et dans les conjonctions de la lune avec le soleil, elle se confond avec l'équation du centre, qu'elle diminue constamment. Par cette raison, les anciens observateurs qui ne déterminaient les élémens de la théorie lunaire qu'au moyen des éclipses et dans la vue de prédire ces phénomènes, trouvèrent l'équation du centre de la lune, plus petite que la véritable, de toute la quantité de l'évection.

On observe encore dans le mouvement lunaire, une grande inégalité qui disparaît dans les conjonctions et dans les oppositions de la lune au soleil, ainsi que dans les points où ces deux astres sont éloignés entre eux du quart de la circonférence. Elle est à son maximum et s'élève à 0°,5877, quand leur distance mutuelle est de cinquante degrés; d'où l'on a conclu qu'elle est proportionnelle au sinus du double de la distance de la lune au soleil. Cette inégalité que l'on nomme variation, disparaissant dans les éclipses, elle n'a pu être reconnue par l'observation de ces phénomènes.

Enfin, le mouvement de la lune s'accélère quand celui du soleil se ralentit, et réciproquement; d'où résulte une inégalité connue sous le nom d'équation annuelle, et dont la loi est exactement la même que celle de l'équation du centre du soleil, avec un signe contraire. Cette inégalité qui dans son maximum est de 0°,2086, se confond dans les éclipses, avec l'équation du centre du soleil; et dans le calcul de l'instant de ces phénomènes, il est indifférent de considérer séparément ces deux équations, ou de supprimer l'équation annuelle de la théorie lunaire, pour en accroître l'équation du

centre du soleil. Par cette raison, les anciens astronomes donnèrent à l'orbe solaire, une trop grande excentricité; comme ils en assignèrent une trop petite, à l'orbe lunaire, à raison de l'évection.

Cet orbe est incliné de 5°,7155, à l'écliptique : ses points d'intersection avec elle, que l'on nomme noeuds, ne sont pas fixes dans le ciel; ils ont un mouvement rétrograde ou contraire à celui de la lune, mouvement qu'il est facile de reconnaître par la suite des étoiles que la lune rencontre en traversant l'écliptique. On appelle nœud ascendant, celui dans lequel la lune s'élève au-dessus de l'écliptique, vers le pôle boréal; et noeud descendant, celui dans lequel elle s'abaisse au-dessous, vers le pôle austral. La durée d'une révolution sidérale des nœuds, était au commencement du siècle, de 6793i,59081, et la distance moyenne du nœud ascendant à l'équinoxe du printemps, était 15°,46488; mais le mouvement des nœuds se ralentit de siècle en siècle. Il est assujéti à plusieurs inégalités dont la plus grande est proportionnelle au sinus du double de la distance de la lune au soleil, et s'élève à 1º,8102 dans son maximum. L'inclinaison de l'orbe est pareillement variable; sa plus grande inégalité qui s'élève à 0,1627 dans son maximum est proportionnelle au cosinus du même angle dont dépend l'inégalité du mouvement des nœuds; mais l'inclinaison moyenne paraît constante dans les différens siècles, malgré les variations séculaires du plan de l'écliptique.

L'orbe lunaire, et généralement les orbes du soleil et de tous les corps célestes, n'ont pas plus de réalité, que les paraboles décrites par les projectiles, à la surface de la terre. Pour représenter le mouvement d'un corps dans l'espace, on imagine une ligne menée par toutes les positions successives de son centre : cette ligne est son orbite dont le plan fixe ou variable est celui qui passe par deux positions consécutives du corps, et par le point autour duquel on le conçoit en mouvement.

Au lieu d'envisager ainsi le mouvement d'un corps, on peut le projeter par la pensée, sur un plan fixe, et déterminer sa courbe de projection et sa hauteur au-dessus de ce plan. Cette méthode fort simple est celle que les astronomes emploient dans les tables des mouvemens célestes. Le diamètre apparent de la lune, change d'une manière analogue aux variations du mouvement lunaire : il est de 5438", dans la plus grande distance de la lune à la terre, et de 6207" dans sa plus petite distance.

Les mêmes moyens auxquels la parallaxe du soleil avait échappé par sa petitesse, ont donné la parallaxe moyenne de la lune, égale à 10661". Ainsi, à la même distance où cet astre nous paraît sous un angle de 5823", la terre serait vue sous un angle de 21332"; leurs diamètres sont donc dans le rapport de ces nombres, ou à très-peu près, comme trois est à onze; et le volume du globe lunaire est quarante-neuf fois moindre que celui du globe terrestre.

Les phases de la lune sont un des phénomènes célestes les plus frappans. En se dégageant le soir des rayons du soleil, elle reparaît avec un faible croissant qui augmente à mesure qu'elle s'en éloigne, et qui devient un cercle entier de lumière, lorsqu'elle est en opposition avec cet astre. Quand ensuite elle s'en approche, ses phases diminuent suivant le degré de leur précédente augmentation, jusqu'à ce qu'elle se plonge le matin, dans les rayons solaires. Le croissant de la lune, constamment dirigé vers le soleil, indique évidemment qu'elle en emprunte sa lumière; et la loi de la variation de ses phases dont la largeur croît à très-peu près proportionnellement au sinus-verse de la distance angulaire de la lune au soleil, nous prouve qu'elle est sphérique.

Le retour des phases dépend de l'excès du mouvement de la lune sur celui du soleil, excès que l'on nomme mouvement synodique lunaire. La durée de la révolution synodique de cetastre, ou la période de ses conjonctions moyennes, est maintenant de 29,530587953 : elle est à l'année tropique, à très-peu près dans le rapport de 19 à 235; c'est-à-dire que dix-neuf années solaires forment environ deux cent trente-cinq mois lunaires.

Les sysigies sont les points de l'orbite, où la lune se trouve en conjonction ou en opposition avec le soleil. Dans le premier cas, la lune est nouvelle : elle est pleine dans le second. Les quadratures sont les points où la lune est éloignée du soleil, de cent ou de trois cents degrés comptés dans le sens de son mouvement propre. Dans ces points que l'on nomme premier et second quartier de la lune, nous voyons la moitié de son hémisphère éclairé. A la rigueur, nous

en apercevons un peu plus; car lorsque l'exacte moitié se découvre à nous, la distance angulaire de la lune au soleil est un peu moindre que cent degrés. A cet instant que l'on reconnaît parce que la ligne qui sépare l'hémisphère éclairé, de l'hémisphère obscur, paraît être une ligne droite; le rayon mené de l'observateur, au centre de la lune, est perpendiculaire à celui qui joint les centres de la lune et du soleil. Ainsi, dans le triangle formé par les droites qui joignent ces centres et l'œil de l'observateur, l'angle à la lune est droit, et l'observation donne l'angle à l'observateur; on peut donc déterminer la distance du soleil à la terre, en parties de la distance de la terre à la lune. La difficulté de fixer avec précision, l'instant où nous voyons la moitié du disque éclairé de la lune, rend cette méthode peu rigoureuse: on lui doit cependant les premières notions justes que l'on ait eues du volume immense du soleil, et de sa grande distance à la terre.

L'explication des phases de la lune conduit à celle des éclipses, objet de la frayeur des hommes dans les temps d'ignorance, et de leur curiosité dans tous les temps. La lune ne peut s'éclipser que par l'interposition d'un corps opaque qui lui dérobe la lumière du soleil, et il est visible que ce corps est la terre, puisque les éclipses de lune n'arrivent jamais que dans ses oppositions, ou lorsque la terre est entre cet astre et le soleil. Le globe terrestre projette derrière lui relativement au soleil, un cône d'ombre dont l'axe est sur la droite qui joint les centres du soleil et de la terre, et qui se termine au point où les diamètres apparens de ces deux corps seraient les mêmes. Ces diamètres vus du centre de la lune en opposition et dans sa moyenne distance, sont à peu près de 5920" pour le soleil, et de 21322" pour la terre; ainsi le cône d'ombre terrestre a une longueur au moins trois fois et demie plus grande que la distance de la lune à la terre ; et sa largeur aux points où il est traversé par la lune, est environ huit tiers du diamètre lunaire. La lune serait donc éclipsée, toutes les fois qu'elle serait en opposition au soleil, si le plan de son orbe coincidait avec l'écliptique; mais en vertu de l'inclinaison mutuelle de ces plans, la lune dans ses oppositions, est souvent élevée au-dessus, ou abaissée au-dessous du cônc d'ombre terrestre, et elle n'y pénètre que lorsqu'elle est près de ses nœuds. Si tout son disque s'enfonce dans l'ombre de la terre, l'éclipse

de lune est totale: elle est partielle, si ce disque n'y pénètre qu'en partie; et l'on conçoit que la proximité de la lune à ses nœuds, au moment de l'opposition, doit produire toutes les variétés que l'on observe dans ces éclipses.

Chaque point de la surface de la lune, avant de s'éclipser, perd successivement la lumière des diverses parties du disque solaire. Sa clarté diminue donc graduellement, et s'éteint au moment où il pénètre dans l'ombre terrestre. On a nommé pénombre, l'intervalle dans lequel cette diminution a lieu, et dont la largeur est égale au diamètre apparent du soleil vu du centre de la lune.

La durée moyenne d'une révolution du soleil, par rapport au nœud de l'orbe lunaire, est de 346i,619870; elle est à la durée d'une révolution synodique de la lune, à fort peu près dans le rapport de 223 à 19. Ainsi, après une période de 223 mois lunaires, le soleil et la lune se retrouvent à la même position relativement au nœud de l'orbe lunaire; les éclipses doivent donc revenir à peu près dans le même ordre, ce qui donne pour les prédire, un moyen simple qui fut employé par les anciens astronomes. Mais les inégalités des mouvemens du soleil et de la lune doivent produire des différences sensibles: d'ailleurs, le retour de ces deux astres à la même position par rapport au nœud, dans l'intervalle de 223 mois, n'est pas rigoureux; et les écarts qui en résultent, changent à la longue, l'ordre des éclipses observées pendant une de ces périodes.

La forme circulaire de l'ombre terrestre, dans les éclipses de lune, rendit sensible aux premiers astronomes, la sphéricité trèsapprochée de la terre: nous verrons dans la suite, la théorie lunaire perfectionnée offrir le moyen peut-être le plus exact, pour en déterminer l'aplatissement.

C'est uniquement dans les conjonctions du soleil et de la lune, quand cet astre, en s'interposant entre le soleil et la terre, nous dérobe la lumière du soleil, que nous observons les éclipses solaires. Quoique la lune soit incomparablement plus petite que le soleil; cependant, elle est assez près de la terre, pour que son diamètre apparent diffère peu de celui du soleil : il arrive même, à raison des changemens de ces diamètres, qu'ils se surpassent alternativement l'un l'autre. Imaginons les centres du soleil et de la lune, sur

une même droite avec l'œil de l'observateur; il verra le soleil éclipsé. Si le diamètre apparent de la lune surpasse celui du soleil, l'éclipse sera totale; mais si ce diamètre est plus petit, l'observateur verra un anneau lumineux formé par la partie du soleil, qui déborde le disque de la lune, et alors l'éclipse sera annulaire. Si le centre de la lune n'est pas sur la droite qui joint l'observateur et le centre du soleil; la lune pourra n'éclipser qu'une partie du disque solaire, et l'éclipse sera partielle. Ainsi les variétés des distances du soleil et de la lune au centre de la terre, et celles de la proximité de la lune à ses nœuds, au moment de ses conjonctions, doivent en produire de très-grandes dans les éclipses de soleil. A ces causes se joint encore l'élévation de la lune sur l'horizon , élévation qui change la grandeur de son diamètre apparent, et qui par l'effet de la parallaxe lunaire, peut augmenter ou diminuer la distance apparente des centres du soleil et de la lune, de manière que de deux observateurs éloignés entre eux, l'un peut voir une éclipse de soleil, qui n'a point lieu pour l'autre observateur. En cela, les éclipses de soleil différent des éclipses de lune, qui sont les mêmes pour tous les lieux de la terre où les deux astres sont élevés sur l'horizon.

On voit souvent l'ombre d'un nuage emporté par les vents, parcourir rapidement les coteaux et les plaines, et dérober aux spectateurs qu'elle atteint, la vue du soleil, dont jouissent ceux qui sont au-delà de ses limites : c'est l'image exacte des éclipses totales de soleil. On aperçoit alors autour du disque lunaire, une couronne d'une lumière pâle, et qui probablement, est l'atmosphère même du soleil; car son étendue ne peut convenir à celle de la lune, et Pon s'est assuré par les éclipses du soleil et des étoiles, que cette dernière atmosphère est presque insensible.

L'atmosphère dont on peut concevoir la lune environnée, infléchit les rayons lumineux vers le centre de cet astre; et si, comme cela doit être, les couches atmosphériques sont plus rares, à mesure qu'elles sont plus élevées, ces rayons en y pénétrant, s'infléchissent de plus en plus, et décrivent une courbe concave vers sa surface. Un observateur placé sur la lune, ne cesserait donc de voir un astre, que lorsqu'il serait placé au-dessous de son horizon, d'un angle que l'on nomme réfraction horizontale. Les rayons émanés de cet astre

vu à l'horizon, après avoir rasé la surface de la lune, continuent leur route, en décrivant une courbe semblable à celle par laquelle ils y sont parvenus. Ainsi un second observateur placé derrière la lune, relativement à l'astre, l'apercevrait encore, en vertu de l'inflexion de ses rayons dans l'atmosphere lunaire. Le diametre de la lune n'est point sensiblement augmenté par la réfraction de son atmosphère; une étoile éclipsée par cet astre, l'est donc plus tard que si cette atmosphère n'existait point, et par la même raison, elle cesse plus tôt d'être éclipsée ; ensorte que l'influence de l'atmosphère lunaire est principalement sensible sur la durée des éclipses du soleil et des étoiles par la lune. Des observations précises et multipliées ont fait à peine soupçonner cette influence; et l'on s'est assuré qu'à la surface de la lune, la réfraction horizontale n'excède pas cinq secondes. Cette réfraction sur la terre, est au moins mille fois plus grande; l'atmosphère lunaire, si elle existe, est donc d'une rareté extrême et supérieure à celle du vide que nous formons dans nos meilleures machines pneumatiques. De là, nous devons conclure qu'aucun des animaux terrestres ne pourrait respirer et vivre sur la lune, et que si elle est habitée, ce ne peut être que par des animaux d'une autre espèce. Il y a lieu de penser que tout est solide à sa surface; car les grands télescopes nous la présentent comme une masse aride sur laquelle on a cru remarquer les effets et même l'explosion des volcans.

Bouguer a trouvé par l'expérience, que la lumière de la pleine lune est environ trois cent mille fois plus faible que celle du soleile c'est la raison pour laquelle cette lumière rassemblée au foyer des plus grands miroirs, ne produit point d'effet sensible sur le thermomètre.

On distingue, surtout près des nouvelles lunes, la partie du disque lunaire, qui n'est point éclairée par le soleil. Cette faible clarté que l'on nomme lumière cendrée, est due à la lumière que l'hémisphère éclairé de la terre, réfléchit sur la lune; et ce qui le prouve, c'est qu'elle est plus sensible vers la nouvelle lune, quand une plus grande partie de cet hémisphère, est dirigée vers cet astre. En effet, il est visible que la terre offrirait à un observateur placé sur la lune, des phases semblables à celles que la lune nous

présente, mais accompagnées d'une plus forte lumière, à raison de la plus grande étendue de la surface terrestre.

Le disque lunaire présente un grand nombre de taches invariables que l'on a observées et décrites avec soin. Elles nous montrent que cet astre dirige toujours vers nous, à peu près le même hémisphère; il tourne donc sur lui-même, dans un temps égal à celui de sa révolution autour de la terre; car si l'on imagine un observateur placé au centre de la lune supposée transparente, il verra la terre et son rayon visuel se mouvoir autour de lui, et comme ce rayon traverse toujours au même point à peu près, la surface lunaire, il est évident que ce point doit tourner en même temps et dans le même sens que la terre, autour de l'observateur.

Cependant, l'observation suivie du disque lunaire, fait apercevoir de légères variétés dans ses apparences : on voit les taches s'approcher et s'éloigner alternativement de ses bords. Celles qui en sont très-voisines, disparaissent et reparaissent successivement, en faisant des oscillations périodiques que l'on a désignées sous le nom de libration de la lune. Pour se former une juste idée des causes principales de ce phénomène, il faut considérer que le disque de la lune, vu du centre de la terre, est terminé par la circonférence d'un cercle du globe lunaire, perpendiculaire à son rayon vecteur : c'est sur le plan de ce cercle que se projette l'hémisphère de la lune, dirigé vers la terre, et dont les apparences sont liées au mouvement de rotation de cet astre. Si la lune était sans mouvement de rotation, son rayon vecteur tracerait à chaque révolution lunaire, la circonférence d'un grand cercle, sur sa surface, dont toutes les parties se présenteraient successivement à nous. Mais en même temps que le rayon vecteur tend à décrire cette circonférence, le globe lunaire en tournant, ramène toujours à fort peu près, le même point de sa surface, sur ce rayon, et par conséquent, le même hémisphère vers la terre. Les inégalités du mouvement de la lune, produisent de légères variétés dans ses apparences; car son mouvement de rotation ne participant point d'une manière sensible, à ces inégalités, il est variable relativement à son rayon vecteur qui va rencontrer ainsi sa surface dans différens points; le globe lunaire fait donc par rapport à ce rayon, des oscillations correspondantes aux inégalités

de son mouvement, et qui nous dérobent et nous découvrent alternativement quelques parties de sa surface.

Mais le globe lunaire a une autre libration en latitude, perpendiculaire à celle-ci, et par laquelle les régions situées vers les pôles de rotation de ce globe, disparaissent et reparaissent alternativement. Pour concevoir ce phénomène, supposons l'axe de rotation, perpendiculaire à l'écliptique. Lorsque la lune sera dans son nœud ascendant, ses deux pôles seront aux bords austral et boréal de l'hémisphère visible. A mesure qu'elle s'élevera sur l'écliptique, le pôle boréal et les régions qui en sont très-voisines disparaîtront, tandis que les régions voisines du pôle austral se découvriront de plus en plus jusqu'au moment où l'astre parvenu à sa plus grande latitude boréale, commencera à revenir vers l'écliptique. Les phénomènes précédens se reproduiront alors dans un ordre inverse; et lorsque la lune parvenue à son nœud descendant, s'abaissera sous l'écliptique, le pôle boréal présentera les phénomènes que le pôle austral avait offerts.

L'axe de rotation de la lune n'est pas exactement perpendiculaire à l'écliptique; et son inclinaison produit des apparences que l'on peut concevoir en supposant la lune mue sur le plan même de l'écliptique, de manière que son axe de rotation reste toujours parallèle à lui-même. Il est clair qu'alors, chaque pôle sera visible pendant une moitié de la révolution de la lune autour de la terre, et invisible pendant l'autre moitié, ensorte que les régions qui en sont très-voisines seront alternativement découvertes et cachées.

Enfin, l'observateur n'est point au centre de la terre, mais à sa surface : c'est le rayon visuel mené de son œil au centre de la lune, qui détermine le milieu de son hémisphère apparent; et il est clair qu'à raison de la parallaxe lunaire, ce rayon coupe la surface de la lune, dans des points sensiblement différens suivant la hauteur de cet astre sur l'horizon.

Toutes ces causes ne produisent qu'une libration apparente, dans le globe lunaire; elles sont purement optiques, et n'affectent point son mouvement réel de rotation. Ce mouvement peut cependant être assujéti à de petites inégalités; mais elles sont trop peu sensibles pour avoir été observées.

Il n'en est pas de même des variations du plan de l'équateur lunaire. L'observation assidue des taches de la lune fit reconnaître à Dominique Cassini, que l'axe de cet équateur n'est point perpendiculaire à l'écliptique, comme on l'avait supposé jusqu'alors, et que ses positions successives ne sont point exactement parallèles. Ce grand astronome fut conduit au résultat suivant, l'une de ses plus belles découvertes, et qui renferme toute la théorie astronomique de la libration réelle de la lune. Si par le centre de cet astre, on conçoit un premier plan perpendiculaire à son axe de rotation, plan qui se confond avec celui de son équateur; si de plus, on imagine par le même centre, un second plan parallèle à celui de l'écliptique, et un troisième plan qui soit celui de l'orbe lunaire, en faisant abstraction des inégalités périodiques de son inclinaison et des nœuds; ces trois plans ont constamment une intersection commune; le second situé entre les deux autres, forme avec le premier, un angle d'environ 1°,67, et avec le troisième, un angle de 5°,7155. Ainsi, les intersections de l'équateur lunaire avec l'écliptique, ou ses nœuds, coïncident toujours avec les nœuds moyens de l'orbe lunaire, et comme eux, ils ont un mouvement rétrograde dont la période est de 6793; 39081. Dans cet intervalle, les deux pôles de l'équateur, et de l'orbe lunaire, décrivent de petits cercles parallèles à l'écliptique, en comprenant son pôle entre eux, de manière que ces trois pôles soient constamment sur un grand cercle de la sphère céleste.

Des montagnes d'une grande hauteur s'élèvent à la surface de la lune: leurs ombres projetées sur les plaines, y forment des taches qui varient avec la position du soleil. Aux bords de la partie éclairée du disque lunaire, les montagnes se présentent sous la forme d'une dentelure qui s'étend au-delà de la ligne de lumière, d'une quantité dont la mesure a fait connaître que leur hauteur est au moins de trois mille mètres. On reconnaît par la direction des ombres, que la surface de la lune est parsemée de profondes cavités semblables aux bassins de nos mers. Enfin cette surface paraît offrir des traces d'éruptions volcaniques; la formation de nouvelles taches, et des étincelles observées plusieurs fois dans sa partie obscure, semblent même y indiquer des volcans en activité.

CHAPITRE V.

Des Planètes, et en particulier, de Mercure, et de Vénus.

Au milieu de ce nombre infini de points étincelans dont la voûte céleste est parsemée, et qui gardent entre eux une position à peu près constante; dix astres toujours visibles quand ils ne sont point plongés dans les rayons du soleil, se meuvent suivant des lois fort compliquées dont la recherche est un des principaux objets de l'astronomie. Ces astres auxquels on a donné le nom de *Planètes* sont Mercure, Vénus, Mars, Jupiter et Saturne, connus dans la plus haute antiquité, parce qu'on peut les apercevoir à la vue simple; ensuite, Uranus, Cérès, Pallas, Junon et Vesta, dont la découverte récente est due au télescope. Les deux premières planètes ne s'écartent point du soleil au-delà de certaines limites; les autres s'en éloignent à toutes les distances angulaires. Les mouvemens de tous ces corps sont compris dans une zône de la sphère céleste que l'on a nommée zodiaque, et dont la largeur est divisée en deux parties égales par l'écliptique.

Mercure ne s'éloigne jamais du soleil, au-delà de trente-deux degrés. Lorsqu'il commence à paraître le soir, on le distingue à peine dans les rayons du crépuscule : les jours suivans, il s'en dégage de plus en plus, et après s'être éloigné d'environ vingt-cinq degrés du soleil, il revient vers lui. Dans cet intervalle, le mouvement de Mercure rapporté aux étoiles, est direct; mais lorsqu'en se rapprochant du soleil, sa distance à cet astre n'est plus que de vingt degrés, il paraît stationnaire, et son mouvement devient ensuite rétrograde. Mercure continue de se rapprocher du soleil, et finit par se replonger le soir, dans ses rayons. Après y être demeuré pendant quelque temps invisible, on le revoit le matin,

sortant de ces rayons et s'éloignant du soleil. Son mouvement est rétrograde, comme avant sa disparition; mais la planète parvenue à vingt degrés de distance, est de nouveau stationnaire, et reprend un mouvement direct: elle continue de s'éloigner du soleil, jusqu'à la distance de vingt-cinq degrès; ensuite elle s'en rapproche, se replonge le matin, dans les rayons de l'aurore, et reparaît bientôt le soir, pour reproduire les mêmes phénomènes.

L'étendue des plus grandes digressions de Mercure ou de ses plus grands écarts de chaque côté du soleil, varie depuis dix-huit jusqu'à trente-deux degrés. La durée de ses oscillations entières, ou de ses retours à la même position relativement au soleil, varie pareillement depuis cent six jusqu'à cent trente jours. L'arc moyen de sa rétrogradation est d'environ quinze degrés, et sa durée moyenne est de vingt-trois jours; mais il y a de grandes différences entre ces quantités, dans les diverses rétrogradations. En général, le mouvement de Mercure est très-compliqué: il n'a pas lieu exactement sur le plan de l'écliptique; quelquesois la planète s'en écarte au-delà de cinq degrés.

Il a fallu sans doute, une longue suite d'observations pour reconnaître l'identité de deux astres que l'on voyait alternativement, le matin et le soir, s'éloigner et se rapprocher alternativement du soleil; mais comme l'un ne se montrait jamais, que l'autre n'eût disparu, on jugea enfin que c'était la même planète qui oscillait de chaque côté du soleil.

Le diamètre apparent de Mercure est variable, et ses changemens ont des rapports évidens à sa position par rapport au soleil et à la direction de son mouvement. Il est à son minimum, quand la planète se plonge le matin, dans les rayons solaires, ou quand le soir, elle s'en dégage: il est à son maximum, quand elle se plonge le soir, dans ces rayons, ou quand elle s'en dégage le matin. Sa grandeur moyenne est de 21",5.

Quelquefois, dans l'intervalle de sa disparition, le soir, à sa réapparition, le matin, on voit la planète se projeter sur le disque du soleil, sous la forme d'une tache noire qui décrit la corde de ce disque. On la reconnaît à sa position, ou à son diamètre apparent, et à son mouvement rétrograde, conformes à ceux qu'elle

doit avoir. Ces passages de Mercure sont de véritables éclipses annulaires du soleil, qui nous prouvent que cette planète en emprunte sa lumière. Vue dans de fortes lunettes, elle présente des phases analogues aux phases de la lune, dirigées comme elles, vers le soleil, et dont l'étendue variable suivant la position de la planète par rapport au soleil, et suivant la direction de son mouvement, répand une grande lumière sur la nature de son orbite.

La planète Vénus offre les mêmes phénomènes que Mercure, avec cette différence, que ses phases sont beaucoup plus sensibles, ses oscillations plus étendues, et leur durée plus considérable. Les plus grandes digressions de Vénus varient depuis cinquante jusqu'à cinquante-trois degrés; et la durée moyenne de ses oscillations ou de son retour à la même position relativement au soleil, est de cinq cent quatre-vingt-quatre jours. La rétrogradation commence ou finit, quand la planète en se rapprochant le soir, du soleil, ou en s'en éloignant le matin, en est distante d'environ trente-deux degrés. L'arc de sa rétrogradation est de dix-huit degrés à peu près, et sa durée moyenne est de quarante - deux jours. Vénus ne se meut point exactement sur le plan de l'écliptique dont elle s'écarte quelquefois, de plusieurs degrés.

Les durées des passages de Vénus sur le disque solaire, observées à de grandes distances sur la terre, sont très-sensiblement différentes par la même cause qui fait différer entre elles, les durées de la même éclipse du soleil, dans divers pays. En vertu de la parallaxe de cette planète, les divers observateurs la rapportent à différens points de ce disque dont ils lui voient décrire des cordes plus ou moins longues. Dans le passage qui eut lieu en 1769, la différence des durées observées à Otaïti dans la mer du Sud, et à Cajanebourg dans la Laponie suédoise, surpassa quinze minutes. Ces durées pouvant être déterminées avec une grande précision; leurs différences donnent fort exactement la parallaxe de Vénus, et par conséquent sa distance à la terre, au moment de sa conjonction. Une loi remarquable que nous exposerons à la suite des découvertes qui l'ont fait connaître, lie cette parallaxe à celle du soleil et de toutes les planètes; ce qui donne à l'observation de ces passages. une grande importance dans l'astronomie. Après s'être succédés

dans l'intervalle de huit ans, ils ne reviennent qu'après plus d'un siècle, pour se succéder encore dans le court intervalle de huit années, et ainsi de suite. Les deux derniers passages sont arrivés le cinq juin 1761, et le trois juin 1769. Les astronomes se sont répandus dans les lieux où il était le plus avantageux de les observer, et c'est de l'ensemble de leurs observations, que l'on a conclu la parallaxe du soleil, de 27" dans sa moyenne distance à la terre. Les deux prochains passages auront lieu le huit décembre 1874, et le six décembre 1882.

Les grandes variations du diamètre apparent de Vénus, nous prouvent que sa distance à la terre est très-variable. Cette distance est la plus petité, au moment de ses passages sur le soleil, et le diamètre apparent est alors d'environ 189": la grandeur moyenns de ce diamètre est suivant Arago, de 52",173.

Le mouvement de quelques taches observées sur cette planète, avait fait reconnaître à Dominique Cassini, sa rotation dans l'intervalle d'un peu moins d'un jour. Schroëter, par l'observation suivie des variations de ses cornes, et par celle de quelques points lumineux vers les bords de sa partie non éclairée, a confirmé ce résultat sur lequel on avait élevé des doutes. Il a fixé à 01,973, la durée de la rotation, et il a trouvé comme Cassini, que l'équateur de Vénus forme un angle considérable avec l'écliptique. Enfin, il a conclu de ses observations, l'existence de très-hautes montagnes à sa surface; et par la loi de la dégradation de la lumière, dans le passage de sa partie obscure à sa partie éclairée, il a jugé la planète environnée d'une atmosphère étendue dont la force réfractive est peu différente de celle de l'atmosphère terrestre. L'extrême difficulté d'apercevoir ces phénomènes dans les plus forts télescopes, en rend l'observation très-délicate dans nos climats: ils méritent toute l'attention des observateurs placés au midi, sous un ciel favorable. Mais il est bien important, lorsque les impressions sont aussi légères, de se garantir des effets de l'imagination qui peut avoir sur elles une grande influence; car alors les images intérieures qu'elle fait naître, modifient et transforment souvent celles que produit la vue des objets.

Vénus surpasse en clarté les autres planètes et les étoiles : elle

est quelquesois si brillante, qu'on la voit en plein jour, à la vue simple. Ce phénomène qui dépend du retour de la planète à sa même position par rapport au soleil, revient dans l'intervalle de dix-neuf mois à peu près, et son plus grand éclat se reproduit tous les huit ans. Quoiqu'assez fréquent, il ne manque jamais d'exciter la surprise du vulgaire qui dans sa crédule ignorance, le suppose toujours lié aux événemens contemporains les plus remarquables.

CHAPITRE VI.

De Mars.

Les deux planètes que nous venons de considérer, semblent accompagner le soleil, comme autant de satellites; et leur moyen mouvement autour de la terre, est le même que celui de cet astre. Les autres planètes s'éloignent du soleil, à toutes les distances angulaires; mais leurs mouvemens ont avec le sien, des rapports qui ne permettent pas de douter de son influence sur ces mouvemens.

Mars nous paraît se mouvoir d'occident en orient, autour de la terre : la durée moyenne de sa révolution sidérale est à fort peu près de 687 jours : celle de sa révolution synodique ou de son retour à la même position relativement au soleil, est d'environ 780 jours. Son mouvement est fort inégal : quand on commence à revoir, le matin, cette planète à sa sortie des rayons du soleil, ce mouvement est direct et le plus rapide; il se ralentit peu à peu, et devient nul, lorsque la planète est à 152° de distance, du soleil; ensuite, il se change dans un mouvement rétrograde dont la vîtesse augmente jusqu'au moment de l'opposition de Mars avec cet astre. Cette vîtesse alors parvenue à son maximum, diminue et redevient nulle, lorsque Mars en se rapprochant du soleil, n'en est plus éloigné que de 152°. Le mouvement reprend ensuite son état direct, après avoir été rétrograde pendant soixante - treize jours; et dans cet intervalle, la planète décrit un arc de rétrogradation d'environ dix-huit degrés. En continuant de se rapprocher du soleil, elle finit par se plonger le soir, dans ses rayons. Ces singuliers phénomènes se renouvellent dans toutes les oppositions de Mars, avec des différences assez grandes dans l'étendue et dans la durée des rétrogradations.

Mars ne se meut point exactement dans le plan de l'écliptique :

il s'en écarte quelquefois de plusieurs degrés. Les variations de son diamètre apparent sont fort grandes; il est de 19",40 à la moyenne distance de la planète, et il augmente à mesure que la planète approche de son opposition, où il s'élève à 56",43. Alors, la parallaxe de Mars devient sensible, et à peu près double de celle du soleil. La même loi qui existe entre les parallaxes du soleil et de Vénus, a également lieu entre les parallaxes du soleil et de Mars; et l'observation de cette dernière parallaxe avait déjà fait connaître d'une manière approchée, la parallaxe solaire, avant les derniers passages de Vénus sur le soleil, qui l'ont déterminée avec plus de précision.

On voit le disque de Mars, changer de forme, et devenir sensiblement ovale, suivant sa position par rapport au soleil : ces phases prouvent qu'il en reçoit sa lumière. Des taches que l'on observe à sa surface, ont fait connaître qu'il se meut sur lui-même d'occident en orient, dans une période de 11,02733, et autour d'un axe incliné de 66,33 à l'écliptique. Son diamètre est un peu plus petit dans le sens de ses pôles, que dans celui de son équateur. Suivant les mesures d'Arago, ces deux diamètres sont dans le rapport de 189 à 194, le diamètre précédent étant moyen entre eux.

CHAPITRE VII.

De Jupiter et de ses satellites.

Jupiter se meut d'occident en orient, dans une période de 4332,6 à fort peu près: la durée de sa révolution synodique est d'environ 399. Il est assujéti à des inégalités semblables à celles de Mars. Avant l'opposition de la planète au soleil, et lorsqu'elle est à peu près éloignée de cet astre, de cent vingt-huit degrés, son mouvement devient rétrograde: il augmente de vîtesse jusqu'au moment de l'opposition, se ralentit ensuite, devient nul et reprend l'état direct, lorsque la planète en se rapprochant du soleil, n'en est plus distante que de cent vingt-huit degrés. La durée de ce mouvement rétrograde est de cent vingt-un jours, et l'arc de rétrogradation est de onze degrés; mais il y a des différences sensibles dans l'étendue et dans la durée des diverses rétrogradations de Jupiter. Le mouvement de cette planète n'a pas exactement lieu dans le plan de l'écliptique: elle s'en écarte quelquefois de trois ou quatre degrés.

On remarque à la surface de Jupiter, plusieurs bandes obscures, sensiblement parallèles entre elles et à l'écliptique: on y observe encore d'autres taches dont le mouvement a fait connaître la rotation de cette planète, d'occident en orient, sur un axe presque perpendiculaire à l'écliptique, et dans une période de 0i,41377. Les variations de quelques-unes de ces taches, et les différences sensibles dans les durées de la rotation conclue de leurs mouvemens, donnent lieu de croire qu'elles ne sont point adhérentes à Jupiter: elles paraissent être autant de nuages que les vents transportent avec différentes vitesses, dans une atmosphère très-agitée.

Jupiter est, après Vénus, la plus brillante des planètes : quelquefois même, il la surpasse en clarté. Son diamètre apparent est le plus grand qu'il est possible, dans les oppositions où il s'élève à 141",6; sa grandeur moyenne est de 113",4 dans le sens de l'équateur; mais il n'est pas égal dans tous les sens. La planète est sensiblement aplatie à ses pôles de rotation, et Arago a trouvé par des mesures très-précises, que son diamètre dans le sens des pôles, est à celui de son équateur, à fort peu près dans le rapport de 167 à 177.

On observe autour de Jupiter, quatre petits astres qui l'accompagnent sans cesse. Leur configuration change à tout moment : ils oscillent de chaque côté de la planète, et c'est par l'étendue entière des oscillations, que l'on détermine leur rang, en nommant premier satellite, celui dont l'oscillation est la moins étendue. On les voit quelquefois passer sur le disque de Jupiter, et y projeter leur ombre qui décrit alors une corde de ce disque; Jupiter et ses satellites sont donc des corps opaques, éclairés par le soleil. En s'interposant entre le soleil et Jupiter, les satellites forment par leurs ombres sur cette planète, de véritables éclipses de soleil, parfaitement semblables à celles que la lune produit sur la terre.

L'ombre que Jupiter projette derrière lui relativement au soleil, donne l'explication d'un autre phénomène que les satellites nous présentent. On les voit souvent disparaître, quoique loin encore du disque de la planète : le troisième et le quatrième reparaissent quelquesois, du même côté de ce disque. Ces disparitions sont entièrement semblables aux éclipses de lune, et les circonstances qui les accompagnent, ne laissent à cet égard, aucun doute. On voit toujeurs les satellites disparaître du côté du disque de Jupiter, opposé au soleil, et par conséquent du même côté que le cône d'ombre qu'il projette; ils s'éclipsent plus près de ce disque, quand la planète est plus voisine de son opposition; enfin, la durée de leurs éclipses répond exactement au temps qu'ils doivent employer à traverser le cône d'ombre de Jupiter. Ainsi les satellites se meuvent d'occident en orient, autour de cette planète.

L'observation de leurs éclipses est le moyen le plus sûr pour déterminer leurs mouvemens. On a d'une manière précise, les durées de leurs révolutions sidérales et synodiques autour de Jupiter, en comparant des éclipses éloignées d'un grand intervalle, et observées près des oppositions de la planète. On trouve ainsi, que le mouvement des satellites de Jupiter, est presque circulaire et uniforme, puisque cette hypothèse satisfait d'une manière approchée, aux éclipses dans lesquelles nous voyons cette planète, à la même position relativement au soleil; on peut donc déterminer à tous les instans, la position des satellites vus du centre de Jupiter.

De là résulte une méthode simple et assez exacte, pour comparer entre elles, les distances de Jupiter et du soleil, à la terre, méthode qui manquait aux anciens astronomes; car la parallaxe de Jupiter étant insensible à la précision même des observations modernes, et lorsqu'il est le plus près de nous; ils ne jugeaient de sa distance, que par la durée de sa révolution, en estimant plus éloi-

gnées, les planètes dont la révolution est plus longue.

Supposons que l'on ait observé la durée entière d'une éclipse du troisième satellite. Au milieu de l'éclipse, le satellite vu du centre de Jupiter, était à très-peu près, en opposition avec le soleil; sa position sidérale, telle qu'on l'eût observée de ce centre, et qu'il est facile de conclure des mouvemens de Jupiter et du satellite, était donc alors la même que celle du centre de Jupiter yu de celui du soleil. L'observation directe, ou le mouvement connu du soleil, donne la position de la terre vue du centre de cet astre; ainsi en concevant un triangle formé par les droites qui joignent les centres du soleil, de la terre et de Jupiter, on aura l'angle au soleil; l'observation directe donnera l'angle à la terre; on aura donc à l'instant du milieu de l'éclipse, les distances rectilignes de Jupiter, à la terre et au soleil, en parties de la distance du soleil à la terre. On trouve par ce moyen, que Jupiter est au moins, cinq fois plus loin de nous que le soleil, quand son diamètre apparent est de 113",4. Le diamètre de la terre ne paraîtrait que sous un angle de 10",4, à la même distance; le volume de Jupiter est donc au moins, mille fois plus grand que celui de la terre.

Le diamètre apparent de ses satellites, étant insensible; on ne peut pas mesurer exactement leur grosseur. On a essayé de l'apprécier par le temps qu'ils emploient à pénétrer dans l'ombre de la planète; mais les observations offrent à cet égard, de grandes variétés que produisent les différences dans la force des lunettes, dans la vue des observateurs, dans l'état de l'atmosphère, la

hauteur des satellites sur l'horizon, leur distance apparente à Jupiter. et le changement des hémisphères qu'ils nous présentent. La comparaison de l'éclat des satellites est indépendante des quatre premières causes qui ne font qu'altérer proportionnellement leur lumière; elle peut donc nous éclairer sur le retour des taches que le mouvement de rotation de ces corps doit offrir successivement à la terre, et par conséquent, sur ce mouvement lui-même. Herschell qui s'est occupé de cette recherche délicate, a observé qu'ils se surpassent alternativement en clarté, circonstance très-propre à faire juger du maximum et du minimum de leur lumière; et en comparant ces maxima et minima, avec les positions mutuelles de ces astres, il a reconnu qu'ils tournent sur eux-mêmes comme la lune, dans un temps égal à la durée de leur révolution autour de Jupiter; résultat que Maraldi avait déjà conclu pour le quatrième satellite, des retours d'une même tache observée sur son disque, dans ses passages sur la planète. Le grand éloignement des corps célestes affaiblit les phénomènes que leurs surfaces présentent, au point de les réduire à de très-légères variétés de lumière, qui échappent à la première vue, et qu'un long exercice dans ce genre d'observations, rend sensibles. Mais on ne doit employer ce moyen sur lequel l'imagination a tant d'empire, qu'avec une circonspection extrême, pour ne pas se tromper sur l'existence de ces variétés, ni s'égarer sur les causes dont on les fait dépendre.

CHAPITRE VIII.

De Saturne, de ses satellites et de son anneau.

Saturne se meut d'occident en orient, dans une période de 10759 jours: la durée de sa révolution synodique est de 378 jours. Son mouvement qui a lieu à fort peu près dans le plan de l'écliptique, est assujéti à des inégalités semblables à celles des mouvemens de Mars et de Jupiter. Il devient rétrograde, ou finit de l'être, lorsque la planète avant ou après son opposition, est distante de 121°, du soleil: la durée de cette rétrogradation est à peu près de cent trente-neuf jours, et l'arc de sa rétrogradation est d'environ sept degrés. Au moment de l'opposition, le diamètre de Saturne est à son maximum: sa grandeur moyenne est d'environ 50".

Saturne présente un phénomène unique dans le système du monde. On le voit souvent au milieu de deux petits corps qui semblent lui adhérer, et dont la figure et la grandeur sont très-variables : quelquefois ils se transforment dans un anneau qui semble entourer la planète; d'autres fois, ils disparaissent entièrement, et Saturne alors paraît rond comme les autres planètes. En suivant avec soin ces singulières apparences, et en les combinant avec les positions de Saturne relativement au soleil et à la terre; Huyghens a reconnu qu'elles sont produites par un anneau large et mince qui environne le globe de Saturne, et qui en est séparé de toutes parts. Cet anneau incliné de 31°,85 au plan de l'écliptique, ne se présente jamais qu'obliquement à la terre, sous la forme d'une ellipse dont la largeur, lorsqu'elle est la plus grande, est à peu près la moitié de sa longueur. L'ellipse se rétrécit de plus en plus, à mesure que le rayon visuel mené de Saturne à la terre, s'abaisse sur le plan de l'anneau dont l'arc postérieur finit par se cacher derrière la planète,

tandis que l'arc antérieur se confond avec elle; mais son ombre projetée sur le disque de Saturne, y forme une bande obscure que l'on aperçoit dans de fortes lunettes, et qui prouve que Saturne et son anneau sont des corps opaques éclairés par le soleil. Alors on ne distingue plus que les parties de l'anneau, qui s'étendent de chaque côté de Saturne: ces parties diminuent peu à peu de largeur: elles disparaissent enfin quand la terre est dans le plan de l'anneau dont l'épaisseur est trop mince pour être aperçue. L'anneau disparaît encore, quand le soleil venant à rencontrer son plan, n'éclaire que son épaisseur. Il continue d'être invisible, tant que son plan se trouve entre le soleil et la terre; et il ne reparaît, que lorsque le soleil et la terre se trouvent du même côté de ce plan, en vertu des mouvemens respectifs de Saturne et du soleil.

Le plan de l'anneau, rencontrant l'orbe solaire, à chaque demirévolution de Saturne; les phénomènes de sa disparition et de sa réapparition, se renouvellent à peu près tous les quinze ans, mais avec des circonstances souvent différentes : il peut y avoir dans la même année, deux apparitions et deux réapparitions, et jamais davantage.

Dans le temps où l'anneau disparaît, son épaisseur nous renvoie la lumière du soleil, mais en trop petite quantité pour être sensible. On conçoit cependant que pour l'apercevoir, il suffit d'augmenter la force des télescopes. C'est ce qu'Herschell a éprouvé dans la dernière disparition de l'anneau: il n'a jamais cessé de le voir, lorsqu'il avait disparu pour les autres observateurs.

L'inclinaison de l'anneau sur l'écliptique, se mesure par la plus grande ouverture de l'ellipse qu'il nous présente: la position de ses nœuds avec le plan de l'écliptique, se conclut facilement de la position de Saturne, quand l'apparition ou la disparition de l'anneau dépend de la rencontre de son plan par la terre. Tous les phénomènes de ce genre, qui donnent la même position sidérale des nœuds, ont donc lieu par cette rencontre: les autres viennent de la rencontre du même plan par le soleil; on peut ainsi reconnaître par le lieu de Saturne, lorsque l'anneau reparaît ou disparaît, si ce phénomène dépend de la rencontre de son plan, par le soleil ou par la terre. Quand ce plan passe par le soleil, la position de ses nœuds donne

celle de Saturne vu du centre du soleil, et alors on peut déterminer la distance rectiligne de Saturne à la terre, comme on détermine celle de Jupiter au moyen des éclipses de ses satellites. Dans le triangle formé par les trois droites qui joignent les centres du soleil, de Saturne et de la terre, on a les angles à la terre et au soleil; d'où il est aisé de conclure la distance du soleil à Saturne, en parties du rayon de l'orbe solaire. On trouve ainsi que Saturne est environ neuf fois et demie plus éloigné de nous, que le soleil, quand son diamètre apparent est de 50".

Le diamètre apparent de l'anneau, dans la moyenne distance de la planète, est, d'après les mesures précises d'Arago, égal à 118",58; sa largeur apparente est de 17",858. Sa surface n'est pas continue: une bande noire qui lui est concentrique, la sépare en deux parties qui paraissent former deux anneaux distincts dont l'extérieur est moins large que l'intérieur. Plusieurs bandes noires aperçues par quelques observateurs, semblent même indiquer un plus grand nombre d'anneaux. L'observation de quelques points brillans de l'anneau, a fait connaître à Herschell, sa rotation d'occident en orient, dans une période de 0,437, autour d'un axe perpendiculaire à son plan, et passant par le centre de Saturne.

On voit autour de cette planète, sept satellites se mouvoir d'occident en orient dans des orbes presque circulaires. Les six premiers se meuvent à fort peu près dans le plan de l'anneau : l'orbe du septième approche davantage du plan de l'écliptique. Quand ce satellite est à l'orient de Saturne, sa lumière s'affaiblit au point de le rendre très-difficile à apercevoir; ce qui ne peut venir que des taches qui couvrent l'hémisphère qu'il nous présente. Mais pour nous offrir constamment dans la même position, ce phénomène; il faut que ce satellite, en cela semblable à la lune et aux satellites de Jupiter, tourne sur lui-même dans un temps égal à celui de sa révolution autour de Saturne. Ainsi l'égalité des durées de rotation et de révolution, paraît être une loi générale du mouvement des satellites.

Les diamètres de Saturne ne sont pas égaux entre eux: celui qui est perpendiculaire au plan de l'anneau, paraît plus petit d'un onzième au moins, que le diamètre situé dans ce plan. Si l'on compare cet

aplatissement, à celui de Jupiter; on peut en conclure avec beaucoup de vraisemblance, que Saturne tourne rapidement autour du plus petit de ses diamètres, et que l'anneau se meut dans le plan de son équateur. Herschell vient de confirmer ce résultat, par des observations directes qui lui ont fait connaître que la rotation de Saturne a lieu, comme tous les mouvemens du système planétaire, d'occident en orient, et que sa durée est de 0,428; ce qui diffère peu de la durée de la rotation de Jupiter. Il est assez remarquable que cette durée soit à peu près la même et au-dessous d'un demi-jour pour les deux plus grosses planètes, tandis que les planètes qui leur sont inférieures, tournent toutes sur elles-mêmes dans l'intervalle d'un jour à fort peu près.

Herschell a encore observé à la surface de Saturne, cinq bandes à peu près parallèles à son équateur.

CHAPITRE IX.

D'Uranus et de ses satellites.

La planète Uranus avait échappé par sa petitesse, aux anciens observateurs. Flamsteed à la fin du dernier siècle, Mayer et Le Monnier dans celui-ci, l'avaient déjà observée comme une petite étoile; mais ce n'est qu'en 1781, qu'Herschell a reconnu son mouvement, et bientôt après, en suivant cet astre avec soin, on s'est assuré qu'il est une vraie planète. Comme Mars, Jupiter et Saturne, Uranus se meut d'occident en orient autour de la terre. La durée de sa révolution sidérale est d'environ 30689 jours : son mouvement qui a lieu à fort peu près dans le plan de l'écliptique, commence à être rétrograde, lorsqu'avant l'opposition, la planète est à 115° de distance, du soleil; il finit de l'être, quand après l'opposition, la planète en se rapprochant du soleil, n'en est plus éloignée que de 115°. La durée de sa rétrogradation est à peu près de 151 jours, et l'arc de rétrogradation est de quatre degrés.

Si l'onjuge de la distance d'Uranus, par la lenteur de son mouvement; il doit être aux confins du système planétaire. Son diamètre apparent est très-petit et s'élève à peine à douze secondes. Suivant Herschell, six satellites se meuvent autour de cette planète, dans des orbes presque circulaires et perpendiculaires à peu près au plan de l'écliptique. Il faut pour les apercevoir, de très-forts télescopes: deux seuls d'entre eux, le second et le quatrième ont été reconnus par d'autres observateurs. Les observations qu'Herschell a publiées sur les quatre autres, sont trop peu nombreuses pour déterminer les élémens de leurs orbes, et même pour assurer incontestablement leur existence.

Digitized by Google

CHAPITRE X.

Des planètes télescopiques Cérès, Pallas, Junon et Vesta.

Les quatre planètes sont si petites, qu'on ne peut les voir qu'avec de fortes lunettes. Le premier jour de ce siècle est remarquable par la découverte que Piazzi fit à Palerme, de la planète Cérès. Pallas fut reconnue en 1802, par Olbers; Junon le fut par Harding en 1803; enfin Olbers en 1807, a reconnu Vesta. Les mouvemens de ces astres ont lieu, comme ceux des autres planètes, d'occident en orient : comme eux, ils sont alternativement directs et rétrogrades. Mais le peu de temps écoulé depuis la découverte de ces planètes, ne permet pas de connaître avec précision, les durées de leurs révolutions, et les lois de leurs mouvemens. Seulement, on sait que les durées de leurs révolutions sidérales sont peu différentes entre elles, et que celles des trois premières sont d'environ quatre ans et deux tiers : la durée de la révolution de Vesta paraît plus courte d'une année. Pallas peut s'éloigner du plan de l'écliptique, beaucoup plus que les anciennes planètes; et pour embrasser ses écarts, il faut élargir considérablement le zodiaque.

CHAPITRE XI.

Du mouvement des planètes autour du Soleil.

Di l'homme s'était borné à recueillir des faits; les sciences ne seraient qu'une nomenclature stérile, et jamais il n'eût connu les grandes lois de la nature. C'est en comparant les faits entre eux, en saisissant leurs rapports, et en remontant ainsi à des phénomènes de plus en plus étendus; qu'il est enfin parvenu à découvrir ces lois toujours empreintes dans leurs effets les plus variés. Alors, la nature en se dévoilant, lui a montré un petit nombre de causes donnant naissance à la foule des phénomènes qu'il avait observés : il a pu déterminer ceux qu'elles doivent faire éclore; et lorsqu'il s'est assuré que rien ne trouble l'enchaînement de ces causes à leurs effets; il a porté ses regards dans l'avenir, et la série des événemens que le temps doit développer, s'est offerte à sa vue. C'est uniquement encore dans la théorie du système du monde, que l'esprit humain, par une longue suite d'efforts heureux, s'est élevé à cette hauteur. La première hypothèse qu'il a imaginée pour expliquer les apparences des mouvemens planétaires, n'a dû être qu'une ébauche imparfaite de cette théorie; mais en représentant d'une manière ingénieuse, ces apparences, elle a donné le moyen de les soumettre au calcul; et l'on verra qu'en lui faisant subir les modifications que l'observation a successivement indiquées, elle se transforme dans le vrai système de l'univers.

Ce que les apparences des mouvemens planétaires offrent de plus remarquable, est leur changement de l'état direct à l'état rétrograde, changement qui ne peut être évidemment que le résultat de deux mouvemens alternativement conspirans et contraires. L'hypothèse la plus naturelle pour les expliquer, est celle qu'imaginèrent les anciens astronomes, et qui consiste à faire mouvoir dans le sens direct, les trois planètes supérieures sur des épicycles dont les centres décrivent dans le même sens, des cercles autour de la terre. Il est visible qu'alors, si l'on conçoit la planète au point de son épicycle, le plus bas ou le plus voisin de la terre; elle a dans cette position, un mouvement contraire à celui de l'épicycle qui toujours est transporté parallèlement à lui-même; en supposant donc que le premier de ces mouvemens l'emporte sur le second, le mouvement apparent de la planète sera rétrograde et à son maximum. Au contraire, la planète étant au point le plus élevé de son épicycle, les deux mouvemens conspirent, et le mouvement apparent est direct et le plus grand possible. En allant de la première à la seconde de ces positions, la planète continue d'avoir un mouvement apparent rétrograde qui diminue sans cesse, devient nul, et se change dans un mouvement direct. Mais l'observation fait voir que le maximum du mouvement rétrograde a constamment lieu, au moment de l'opposition de la planète avec le soleil; il faut donc que chaque épicycle soit décrit dans un temps égal à celui de la révolution de cet astre, et que la planète soit à son point le plus bas, lorsqu'elle est opposée au soleil. Alors on voit la raison pour laquelle le diamètre apparent de la planète en opposition, est à son *maximum*. Quant aux deux planètes inférieures qui ne s'écartent jamais du soleil au - delà de certaines limites, on peut également expliquer leurs mouvemens alternativement directs et rétrogrades, en les supposant mues dans le sens direct, sur des épicycles dont les centres décrivent, chaque année et dans le même sens, des cercles autour de la terre; et en supposant de plus, qu'au moment où la planète atteint le point le plus bas de son épicycle, elle est en conjonction avec le soleil. Telle est l'hypothèse astronomique la plus ancienne, et qui adoptée et perfectionnée par Ptolémée, a pris le nom de cet astronome.

Rien n'indique dans cette hypothèse, les grandeurs absolues des cercles et des épicycles: les apparences ne donnent que les rapports de leurs rayons. Aussi Ptolémée ne paraît pas s'être occupé de rechercher les distances respectives des planètes à la terre; seulement, il supposait plus éloignées, les planètes supérieures dont la

révolution est plus longue: il plaçait ensuite au-dessous du soleil, l'épicycle de Vénus, et plus bas, celui de Mercure. Dans une hypothèse aussi indéterminée, on ne voit point, pourquoi les arcs de rétrogradation des planètes supérieures sont d'autant plus petits, qu'elles sont plus éloignées; et pourquoi les rayons mobiles des épicycles supérieurs sont constamment parallèles entre eux, au rayon de cet astre, et aux rayons mobiles des deux cercles inférieurs. Ce parallélisme que Képler avait déjà introduit dans l'hypothèse de Ptolémée, est clairement indiqué par toutes les observations du mouvement des planètes, parallèlement et perpendiculairement à l'écliptique. Mais la cause de ces phénomènes, devient évidente, sil'on conçoit ces épicycles et ces cercles égaux à l'orbe du soleil. Il est facile de s'assurer que l'hypothèse précédente ainsi modifiés, revient à faire monvoir toutes les planètes autour du soleil qui dans sa révolution réelle on apparente autour de la terre, emporte les -centres de leurs orbites. Une disposition aussi simple du système planétaire ne laisse plus rien d'indéterminé, et montre avec évidence, la relation des mouvemens directs et rétrogrades des planètes, avec le mouvement du soleil. Elle fait disparaître de l'hypothèse de Ptolénaée, les cercles et les épicycles décrits annuellement par les planètes, et ceux qu'il avait introduits pour expliquer leurs mouvemens perpendiculaires à l'écliptique. Les rapports que cet astronome a déterminés entre les rayons des doux épicycles inférieurs et les rayons des cercles que leurs centres décrivent, expriment alors les moyennes distances des planètes au soleil, en parties de la distance moyenne du soleil à la terre; et ces mêmes rapports renversés pour les planètes supérieures, expriment leurs moyennes distances au soleil ou à la terre. La simplicité de cette hypothèse suffirait donc seule, pour la faire admettre; mais les observations que nous devons au télescope, ne laissent aucun donte à son égard.

On a vu précédemment, que les éclipses des satellites de Jupiter déterminent la distance de cette planète au soleil; et il en résulte qu'elle décrit autour de lui, un orbe presque circulaire. On a vu encore que les apparitions et les disparitions de l'anneau de Saturne, donnent sa distance à la terre, environ neuf fois et demie plus grande que celle de la terre au soleil; et suivant les déterminations

de Ptolémée, ce rapport est à fort peu près celui du rayon de l'orbite de Saturme, au rayon de son épicycle; d'où il suit que cet épicycle est égal à l'orbite solaire, et qu'ainsi Saturne décrit à peu près un cercle autour du soleil. Les phases observées dans les deux planètes inférieures, prouvent évidemment qu'elles se meuvent auteur du soleil. Suivens, en effet, le mouvement de Vénue, et les variations de son diamètre apparent et de ses phases. Lorsque, le matin, elle commence à se dégager des rayons du soleil, on l'aperçoit avant le lever de cet astre, sous la forme d'un croissant, et son diamètre apparent est à son maximum; elle est donc alors plus près de nous que le soleil, et presque en conjonction avec lui. Son croissant augmente et son diamètre apparent diminue, à mesure qu'elle s'éloigne du soleil. Parvenue à cinquante degrés environ de distance de cet astre, elle s'en rapproche en nous découvrant de plus en plus son hémisphère éclairé : son diamètre apparent continue de diminuer jusqu'au moment où elle se plonge le matin, dans les rayons du soleil. A cet instant, Vénus nous paraît pleine, et son diamètre apparent est à son minimum; elle est donc dans cette position, plus loin de nous, que le soleil. Après avoir disparu pendant quelque temps, cette planète reparaît le soir, et reproduit dans un ordre inverse, les phénomènes qu'elle avait montrés ayant sa disparition. Son hémisphère éclairé se détourne de plus en plus de la terre : ses phases diminuent, et en même temps, son diamètre apparent augmente à mesure qu'elle s'éloigne du soleil. Parvenue à cinquante degrés environ de distance de cet astre, elle revient vers lui: ses phases continuent de diminuer, et son diamètre, d'augmenter, jusqu'à ce qu'elle se plonge de nouveau dans les rayons solaires. Quelquefois, dans l'intervalle qui sépare sa disparition du soir, de sa réapparition du matin, on la voit sous la forme d'une tache, se mouvoir sur le disque du soleil. Il est clair d'après ces phénomènes, que le soleil est à peu près au centre de l'orbite de Vénus, qu'il emporte en même temps qu'il se meut autour de la terre. Mercure nous offre des phénomènes semblables à ceux de Vénus; ainsi le soleil est encore au centre de son orbite.

Nous sommes donc conduits par les apparences des mouvemens et des phases des planètes, à ce résultat général, savoir, que tous

ces astres se meuvent autour du soleil qui, dans sa révolution réelle ou apparente autour de la terre, paraît emporter les foyers de leurs orbites. Il est remarquable que ce résultat dérive de l'hypothèse de Ptolémée, en y supposant égaux à l'orbe solaire, les cercles et les épicycles décrits, chaque année, dans cette hypothèse qui cesse alors d'être purement idéale et propre uniquement à représenter à l'imagination, les mouvemens célestes. Au lieu de faire tourner les planètes autour de centres imaginaires, elle place au foyer de leurs orbites, de grands corps qui par leur action, peuvent les retenir sur ces orbites; et elle nous fait ainsi entrevoir les causes des mouvemens circulaires.

CHAPITRE XII.

Des Comètes.

Souvent on aperçoit des astres qui d'abord, très-peu visibles, augmentent de grandeur et de vîtesse, ensuite diminuent, et enfin disparaissent. Ces astres que l'on nomme comètes, sont presque toujours accompagnés d'une nébulosité qui en croissant, se termine quelquefois dans une queue d'une grande étendue, et qui doit être d'une rareté extrême, puisque l'on voit les étoiles à travers son immense profondeur. L'apparition des comètes suivies de ces longues traînées de lumière a, pendant long-temps, effrayé les hommes toujours frappés des événemens extraordinaires dont les causes leur sont inconnues. La lumière des sciences a dissipé ces vaines terreurs que les comètes, les éclipses et beaucoup d'autres phènomènes inspiraient dans les siècles d'ignorance.

Les comètes participent, comme tous les astres, au mouvement diurne du ciel; et cela joint à la petitesse de leur parallaxe, fait voir que ce ne sont point des météores engendrés dans notre atmosphère. Leurs mouvemens propres sont très-compliqués : ils ont lieu dans tous les sens, et ils n'affectent point, comme ceux des planètes, la direction d'occident en orient, et des plans peu inclinés à l'écliptique.

CHAPITRE XIII.

Des Étoiles et de leurs mouvemens.

La parallaxe des étoiles est insensible : leurs disques vus dans, les plus forts télescopes, se réduisent à des points lumineux : en. cela, ces astres diffèrent des planètes dont les télescopes augmentent la grandeur apparente. La petitesse du diamètre apparent des étoiles, est prouvée, surtout par le peu de temps qu'elles mettent à disparaître dans leurs occultations par la lune, et qui n'étant pas d'une, seconde, indique que ce diamètre est au-dessous de cinq secondes de degré. La vivacité de la lumière des plus brillantes étoiles, comparée à leur petitesse apparente, nous porte à croire qu'elles: sont beaucoup plus éloignées de nous que les planètes, et qu'elles. n'empruntent point comme elles leur clarté, du soleil, mais qu'elles, sont lumineuses par elles-mêmes; et comme les étoiles les pluspetites sont assujéties aux mêmes mouvemens que les plus brillantes, et conservent entre elles, une position constante; il est très - vraisemblable que tous ces astres sont de la même nature, et que ce. sont autant de corps lumineux, plus ou moins gros, et placés plus. ou moins loin au-delà des limites du système solaire.

On observe des variations périodiques dans l'intensité de la lumière de plusieurs étoiles que l'on nomme pour cela, changeantes. Quelquefois, on a vu des étoiles se montrer presque tout-à-coup, et disparaître après avoir brillé du plus vif éclat. Telle fut la fameuse étoile observée en 1572, dans la constellation de Cassiopée. En peu de temps, elle surpassa la clarté des plus belles étoiles et de Jupiter même: sa lumière s'affaiblit ensuîte, et elle disparut seize mois après sa découverte, sans avoir changé de place dans le ciel. Sa couleur éprouva des variations considérables: elle fut d'abord d'un blanc

éclatant, ensuite d'un jaune rougeatre, et enfin d'un blanc plombé. Quelle est la cause de ces phénomènes? Des taches très-étendues que les étoiles nous présentent périodiquement, en tournant sur elles-mêmes à peu près comme le dernier satellite de Saturne, et peut être l'interposition de grands corps opaques qui circulent autour d'elles, expliquent les variations périodiques des étoiles changeantes. Quant aux étoiles qui se sont montrées presque subitement avec une très-vive lumière, pour disparaître ensuite; on peut soupçonner avec vraisemblance, que de grands incendies occasionnés par des causes extraordinaires, ont eu lieu à leur surface; et ce soupçon se confirme par le changement de leur couleur, analogue à celui que nous offrent sur la terre, les corps que nous voyons s'enflammer et s'éteindre.

Une lumière blanche, de figure irrégulière, et à laquelle on à donné le nom de voie lactée, entoure le ciel en forme de ceinture, On y découvre au moyen du télescope, un si grand nombre de petites étoiles, qu'il est très-probable que la voie lactée n'est en grande partie, que la réunion de ces étoiles qui nous paraissent assez rapprochées, pour former une lumière continue. On observe encore dans diverses parties du ciel, de petites blancheurs que l'on nomme nébuleuses, et dont plusieurs semblent être de la même nature que la voie lactée. Vues dans le télescope, elles offrent également la réunion d'un grand nombre d'étoiles : d'autres ne présentent qu'une lumière blanche et continue, peut - être à cause de leur grande distance qui confond la lumière des étoiles qui les composent. Mais probablement la plupart sont formées d'une matière nébuleuse très-rare, répandue en amas divers dans l'espace céleste, et dont la condensation successive a produit les noyaux et toutes les variétés qu'elles présentent. Les changemens remarquables que l'on a observés dans quelques-unes, et particulièrement dans la belle nébuleuse d'Orion, s'expliquent d'une manière heureuse dans cette hypothèse, et lui donnent une grande vraisemblance.

L'immobilité respective des étoiles a déterminé les astronomes à leur rapporter, comme à autant de points fixes, les mouvemens propres des autres corps célestes; mais pour cela, il était nécessairs de les classer, afin de les reconnaître; et c'est dans cette vue, que l'on a partagé le ciel en divers groupes d'étoiles, nommés constellations. Il fallait encore avoir avec précision, la position des étoiles sur la sphère céleste; et voici comme on y est parvenu.

On a imaginé par les deux pôles du monde, et par le centre d'un astre quelconque, un grand cercle que l'on a nommé cercle de déclinaison, et qui coupe perpendiculairement l'équateur. L'arc de ce cercle, compris entre l'équateur et le centre de l'astre, mesure sa déclinaison qui est boréale ou australe, suivant la dénomination du pôle dont il est le plus près.

Tous les astres situés sur le même parallèle, ayant la même déclinaison; il faut pour déterminer leur position, un nouvel élément. On a choisi pour cela, l'arc de l'équateur, compris entre le cercle de déclinaison et l'équinoxe du printemps. Cet arc compté de cet équinoxe, dans le sens du mouvement propre du soleil, c'est-à-dire d'occident en orient, est ce que l'on nomme ascension droite : ainsi, la position des astres est déterminée par leur ascension droite et par leur déclinaison.

La hauteur méridienne d'un astre, comparée à la hauteur du pôle, donne sa distance à l'équateur, ou sa déclinaison. La détermination de son ascension droite, offrait plus de difficultés aux anciens astronomes, à cause de l'impossibilité où ils étaient de comparer directement les étoiles au soleil. La lune pouvant être comparée, le jour, au soleil, et la nuit, aux étoiles; ils s'en servirent comme d'un intermédiaire , pour mesurer la différence d'ascension droite du soleil et des étoiles, en ayant égard aux mouvemens propres de la lune et du soleil, dans l'intervalle des observations. La théorie du soleil donnant ensuite son ascension droite; ils en conclurent celle de quelques étoiles principales auxquelles ils rapportèrent les autres. C'est par ce moyen qu'Hipparque forma le premier catalogue d'étoiles dont nous ayons connaissance. Long-temps après, on donna plus de précision à cette méthode, en employant, au lieu de la lune, la planète Vénus que l'on peut quelquefois apercevoir en plein jour, et dont le mouvement pendant un court intervalle de temps, est plus lent et moins inégal que le mouvement lunaire

Maintenant que l'application du pendule aux horloges, fournit une mesure du temps très-précise; nous pouvons déterminer directement et avec une exactitude bien supérieure à celle des anciens astronomes, la différence d'ascension droite d'un astre et du soleil, par le temps écoulé entre leurs passages au méridien.

On peut d'une manière semblable, rapporter la position des astres à l'écliptique; ce qui est principalement utile dans la théorie de la lune et des planètes. Par le centre de l'astre, on imagine un grand cercle perpendiculaire au plan de l'écliptique, et que l'on nomme eercle de latitude. L'arc de ce cercle, compris entre l'écliptique et l'astre, mesure sa latitude qui est boréale ou australe, suivant la dénomination du pôle situé du même côté de l'écliptique. L'arc de l'écliptique, compris entre le cercle de latitude et l'équinoxe du printemps, et compté de cet équinoxe, d'occident en orient, est ce que l'on nomme longitude de l'astre dont la position est ainsi déterminée par sa longitude et par sa latitude. On conçoit facilement que l'inclinaison de l'équateur à l'écliptique, étant connue; la longitude et la latitude d'un astre, peuvent se déduire de son ascension droite et de sa déclinaison observées.

Il ne fallut que peu d'années, pour reconnaître la variation des étoiles en ascension droite et en déclinaison. Bientôt on remarqua qu'en changeant de position relativement à l'équateur, elles conservaient la même latitude; et l'on en conclut que leurs variations en ascension droite et en déclinaison, ne sont dues qu'à un mouvement commun de ces astres autour des pôles de l'écliptique. On peut encore représenter ces variations, en supposant les étoiles immobiles, et en faisant mouvoir autour de ces pôles, ceux de l'équateur. Dans ce mouvement, l'inclinaison de l'équateur à l'écliptique, reste la même; et ses nœuds, ou les équinoxes, rétrogradent uniformément, de 154",63 par année. On a vu précédemment, que cette rétrogradation des équinoxes, rend l'année tropique un peu plus courte que l'année sidérale; ainsi la différence des deux années sidérale et tropique, et les variations des étoiles en ascension droite et en déclinaison, dépendent de ce mouvement par lequel le pôle de l'équateur décrit annuellement un arc de 154",63 d'un petit cercle de la sphère céleste, parallèle à l'écliptique. C'est en

cela que consiste le phénomène connu sous le nom de précession des équinoxes.

La précision dont l'astronomie moderne est redevable à l'application des lumettes aux instrumens astronomiques, et à celle du pendule aux horloges, a fait apercevoir de petites inégalités périodiques, dans l'inclinaison de l'équateur à l'écliptique et dans la précession des équinoxes. Bradley qui les a découvertes, et qui les a suivies avec un soin extrême pendant plusieurs années, en a reconnu la loi qui peut être représentée de la manière suivante.

On conçoit le pôle de l'équateur, mu sur la circonférence d'une petite ellipse tangente à la sphère céleste, et dont le centre que l'equateur, décrit moyen de l'équateur, décrit uniformément, chaque année, 154",63 du parallèle à l'écliptique, sur lequel il est situé. Le grand axe de cette ellipse, toujours dans le plan d'un cercle de latitude, répond à un arc de ce grand cercle, de 59",56; et le petit axe répond à un arc de son parallèle, de 111",30 La situation du vrai pôle de l'équateur sur cette ellipse, se détermine ainsi. On imagine sur le plan de l'ellipse, un petit cercle qui a le même centre, et dont le diamètre est égal au grand axe. On conçoit encore un rayon de ce cercle, mu d'un mouvement uniforme et rétrograde, de manière que ce rayon coïncide avec la moitié du grand axe, la plus voisine de l'écliptique; toutes les fois que le nœud moyen ascendant de l'orbite lunaire, coïncide avec l'équinoxe du printemps: enfin, de l'extrémité de ce rayon mobile, on abaisse une perpendiculaire sur le grand axe de l'ellipse. Le point où cette perpendiculaire coupe la circonférence elliptique, est le lieu du vrai pôle de l'équateur. Ce mouvement du pôle s'appelle nutation.

Les étoiles, en vertu des mouvemens que nous venons de décrire, conservent entre elles une position constante; mais le grand observateur à qui l'on doit la découverte de la nutation, a reconnu dans tous ces astres, un mouvement général et périodique, qui altère un peu leurs positions respectives. Pour se représenter ce mouvement, il faut imaginer que chaque étoile décrit annuellement une petite circonférence parallèle à l'écliptique, dont le centre est la position moyenne de l'étoile, et dont le diamètre vu de la terre, soutend un angle de 125"; et qu'elle se meut sur cette circonférence,

comme le soleil dans son orbite, de manière cependant que le soleil soit constamment plus avancé qu'elle, de cent degrés. Cette circonférence, en se projetant sur la surface du ciel, paraît sous la forme d'une ellipse plus ou moins aplatie suivant la hauteur de l'étoile audessus de l'écliptique; le petit axe de l'ellipse étant au grand axe, comme le sinus de cette hauteur est au rayon. De là naissent toutes les variétés de ce mouvement périodique des étoiles, que l'on nomme aberration.

Indépendamment de ces mouvemens généraux, plusieurs étoiles ont des mouvemens particuliers, très-lents, mais que la suite des temps a rendus sensibles. Ils ont été jusqu'ici principalement remarquables dans Syrius et Arcturus, deux étoiles des plus brillantes; mais tout porte à croire que les siècles suivans développeront des mouvemens semblables dans les autres étoiles.

CHAPITRE XIV.

De la figure de la Terre, de la variation de la pesanteur à sa surface, et du système décimal des poids et mesures.

Revenons du ciel sur la terre, et voyons ce que les observations nous ont appris sur ses dimensions et sur sa figure. On a déjà vu qu'elle est à très-peu près sphérique: la pesanteur partout dírigée vers son centre, retient les corps à sa surface, quoique dans les lieux diamétralement opposés, ou antipodes les uns à l'égard des autres, ils aient des positions contraires. Le ciel et les étoiles paraissent toujours au-dessus de la terre; car l'élévation et l'abaissement ne sont relatifs qu'à la direction de la pesanteur.

Du moment où l'homme eut reconnu la sphéricité du globe qu'il habite, la curiosité dut le porter à mesurer ses dimensions; il est donc vraisemblable que les premières tentatives sur cet objet, remontent à des temps bien antérieurs à ceux dont l'histoire nous a conservé le souvenir, et qu'elles ont été perdues dans les révolutions physiques et morales que la terre a éprouvées. Les rapports de plusieurs mesures de la plus haute antiquité, soit entre elles, soit avec la longueur de la circonférence terrestre, ont fait conjecturer non-seulement que dans des temps fort anciens, cette longueur a été exactement connue; mais qu'elle a servi de base à un système complet de mesures dont on retrouve des vestiges en Egypte et dans l'Asie. Quoi qu'il en soit, la première mesure précise de la terre, dont on ait eu une connaissance certaine, est celle que Picard exécuta en France, vers la fin de l'avant-dernier siècle, et qui depuis a été vérifiée plusieurs fois. Cette opération est facile à concevoir. En s'avançant vers le nord, on voit le pôle

s'élever de plus en plus : la hauteur méridienne des étoiles situées au nord, augmente, et celle des étoiles situées au midi, diminue; quelques-unes même deviennent invisibles. La première notion de la courbure de la terre est due, sans doute, à l'observation de ces phénomènes qui ne pouvaient pas manquer de fixer l'attention des hommes, dans les premiers âges des sociétés, où l'on ne distinguait les saisons et leurs retours, que par le lever et le coucher des principales étoiles, comparés à ceux du soleil. L'élévation ou la dépression des étoiles, fait connaître l'angle que les verticales élevées aux extrémités de l'arc parcouru sur la terre, forment au point de leur concours; car cet angle est évidemment égal à la différence des hauteurs méridiennes d'une même étoile, moins l'angle sous lequel on verrait du centre de l'étoile, l'espace parcouru, et l'on s'est assuré que ce dernier angle est insensible. Il ne s'agit plus ensuite, que de mesurer cet espace. Il serait long et pénible d'appliquer nos mesures sur une aussi grande étendue; il est beaucoup plus simple d'en lier par une suite de triangles, les extrémités à celles d'une base de douze ou quinze mille mêtres; et vu la précision avec laquelle on peut déterminer les angles de ces triangles, on a très-exactement sa longueur. C'est ainsi que l'on a mesuré l'arc du méridien terrestre, qui traverse la France. La partie de cet arc, dont l'amplitude est la centième partie de l'angle droit, et dont le milieu répond à 50° de hauteur du pôle, est de cent mille mètres à fort peu près.

De toutes les figures rentrantes, la figure sphérique est la plus simple; puisqu'elle ne dépend que d'un seul élément, la grandeur de son rayon. Le penchant naturel à l'esprit humain, de supposer aux objets, la forme qu'il conçoit le plus aisément, le porta donc à donner une forme sphérique à la terre. Mais la simplicité de la nature ne doit pas toujours se mesurer par celle de nos conceptions. Infiniment variée dans ses effets, la nature n'est simple que dans ses causes, et son économie consiste à produire un grand nombre de phénemènes souvent très-compliqués, au moyen d'un petit nombre de lois générales. La figure de la terre est un résultat de ces lois qui, modifiées par mille circonstances, peuvent l'écarter sensiblement de la sphère. De petites variations observées dans la

mesure des degrés en France, indiquaient ces écarts; mais les erreurs inévitables des observations, laissaient des doutes sur cet intéressant phénomène, et l'Académie des Sciences dans le sein de laquelle cette grande question fut vivement agitée, juges avec raison, que la différence des degrés terrestres, si elle est réelle, se manifesterait principalement dans la comparaison des degrés mesurés à l'équateur et vers les pôles. Elle envoya des académiciens à l'équateur même, et ils y trouvèrent le degré du méridien, plus petit que celui de France. D'autres académiciens se transportèrent au nord où ils trouvèrent un degré plus grand. Ainsi l'accroissement des degrés des méridiens, de l'équateur aux pôles, fut incontestablement prouvé par ces mesures, et l'on en conclut que la terre n'est point exactement sphérique.

Ces voyages fameux des académiciens français, ayant dirigé vers cet objet, l'attention des observateurs; de nouveaux degrés des méridiens furent mesurés en Italie, en Allemagne, en Afrique et en Pensylvanie. Toutes ces mesures concourent à indiquer un accroissement dans les degrés, de l'équateur aux pôles.

Le tableau suivant présente les valeurs des degrés extrêmes mesurés, et du degré moyen entre le pôle et l'équateur. Le premier a été mesuré au Pérou par Bouguer et La Condamine. Le second est le résultat de la grande opération nouvellement exécutée pour déterminer la grandeur de l'arc qui traverse la France, de Dunkerque à Perpignan, et que l'on a prolongé au sud, jusqu'à Formentera: on l'a joint au nord avec le méridien de Greenvick, en liant par des triangles, les côtes de France à celles d'Angleterre. Cet arc immense qui embrasse la septième partie de la distance du pôle à l'équateur, a été déterminé avec une précision extrême. Les observations astronomiques et géodésiques ont été faites au moyen de cercles répétiteurs. Deux bases, chacune de plus de douze mille mètres, ont été mesurées, l'une près de Melan, l'autre près de Perpignan, par un procédé nouveau qui ne laisse aucune incertitude; et ce qui confirme la justesse de toutes les opérations, c'est que la base de Perpignan, conclue de celle de Mekan, par la chaîne de triangles qui les unit, ne diffère pas d'un tiers de mètre, de sa meaure efficitive, quoique la distance qui sépare ces deux bases surpasse neuf cent mille mètres.

Pour ne rien laisser à desirer dans cette opération importante, on a observé sur divers points de cet arc, la hauteur du pôle, et le nombre des oscillations d'un même pendule dans un jour; d'où l'on a conclu les variations des degrés et de la pesanteur. Ainsi cette opération, la plus exacte et la plus étendue que l'on ait entreprise en ce genre, servira de monument pour constater l'état des sciences et des arts dans ce siècle de lumières. Enfin le troisième degré est celui que M. Sevamberg vient de mesurer en Laponie.

Lauteur du pôle.	 L	ongueur du deg	ré.
0,00,			
50,08			
730,71,,,,,,	 	100323 ,6	•

L'accroissement des degrés du méridien, quand la hauteur du pôle augmente, est sensible même dans les diverses parties du grand arc dont nous venons de parler. Considérons en effet ses points extrêmes, et le Panthéon à Paris, l'un des points intermédiaires. On a trouvé par les observations:

ì	Hauteur du pôle.	-	Dista	nce à Greenwie sens du méridi	sh dans le en.
Greenwich	57°,19755			Q	·,o
	54°,27431				,5
Formentera	42*,96178		• • • • • •	1423636	;1

La distance de Greenwich au Panthéon, donne 100135^m, 2 pour le degré dont le milieu correspond à 55°,73592 de hauteur du pôle; et par la distance du Panthéon à Formentera, on ne trouve que 99970^m, 3 pour le degré dont le milieu correspond à 48°,61804, ce qui donne 23^m, 167 d'accroissement par degré, dans l'intervalle de ces deux points.

L'ellipse étant après le cercle, la plus simple des courbes rentrantes; on regarda la terre, comme un solide formé par la révolution d'une ellipse autour de son petit axe. Son aplatissement dans le sens des pôles, est une suite nécessaire de l'accroissement observé des degrés des méridiens, de l'équateur aux pôles. La pesanteur étant dirigée suivant les rayons de ces degrés, ils sont par la loi de l'équilibre des fluides, perpendiculaires à la surface des mers dont la terre est, en grande partie, recouverte. Ils n'aboutissent pas, comme dans la sphère, au centre de l'ellipsoide : ils n'ont ni la même direction, ni la même grandeur que les rayons menés de ce centre à la surface, et qui la coupent obliquement partout ailleurs qu'aux pôles et à l'équateur. La rencontre de deux verticales voisines, situées sous le même méridient, est le centre du petit arc terrestre qu'elles comprennent entre elles si si cet ara était une droite, ces verticales seraient parallèles, ou ne se rencontreraient qu'à une distance infinie; mais à mesure qu'on le courbe, elles se rencontrent à une distance d'autant moindre, que sa courbure devient plus grande; ainsi l'extrémité du petit axe étant le point où l'ellipse approche le plus de se confondre avec une ligne droite, le rayon du degré du pôle, et par conséquent, ce degré lui-même est le plus considérable de tous. C'est le contraire à l'extrémité du grand axe de l'ellipse, à l'équateur, où la courbure étant la plus grande, le degré dans le sens du méridien est le plus petit. En allant du second au premier de ces extrêmes, les degrés vont en augmentant; et si l'ellipse est peu aplatie, leur accroissement est à très-peu près proportionnel au quarré du sinus de la hauteur du pôle sur l'horizon.

On nomme aplatissement ou ellipticité d'un sphéroïde elliptique, l'excès de l'axe de l'équateur, sur celui du pôle, pris pour unité. La mesure de deux degrés dans le sens du méridien, suffit pour le déterminer. Si l'on compare entre eux, les arcs mesurés en France et au Pérou, et qui par leur étendue, leur éloignement, et par les soins et la réputation des observateurs, méritent la préférence; on trouve l'aplatissement de l'ellipsoïde terrestre égal à $\frac{1}{511,7}$; le demi grand axe égal à 6376606^m , et le demi petit axe égal à 6356215^m .

Si la terre était elliptique, on devrait obtenir à peu près le même aplatissement, en comparant, deux à deux, les diverses mesures des degrés terrestres; mais leur comparaison donne à cet égard des différences qu'il est difficile d'attribuer aux seules erreurs des

observations. Il paraît donc que la terre est sensiblement différente d'un ellipsoïde. Cette différence est indiquée par les mesures mêmes des diverses parties du grand arc du méridien qui traverse la France; car on a vu que l'accroissement de ses degrés est de 23^m, 167, ce qui répond à l'ellipticité 1 de l'ellipticité que l'ellipticité précédente $\frac{1}{311.7}$. Il y a même lieu de penser que les deux hémisphères terrestres ne sont pas semblables de chaque côté de l'équateur. Le degré mesuré par La Caille au cap de Bonne-Espérance à 37°,01 de hauteur du pôle austral, a été trouvé de 100050^m,5; il surpasse celui que l'on a mesuré en Pensylvanie, à 43°,56 de hauteur du pôle boréal; et dont la longueur n'est que de 99789^m.,1; il surpasse même le degré de France à 50° de hauteur du pôle. Cependant, le degré du Cap devrait être plus petit que ces degrés, si la terre était un solide régulier de révolution, formé de deux hémisphères semblables; tout porte donc à croire que cela n'est pas. Mais les erreurs assez grandes que de nouvelles mesures ont trop souvent fait reconnaître dans ce genre d'observations, doivent rendre très-circonspect dans les conséquences que l'on en tire, et déterminer à prendre les précautions nécessaires pour éviter à l'avenir de semblables erreurs. Voyons maintenant quelle est dans l'hypothèse d'une figure quelconque, la nature des méridiens terrestres.

Le plan du méridien céleste que déterminent les observations astronomiques, passe par l'axe du monde et par le zénith de l'observateur; puisque ce plan coupe en parties égales, les arcs des parallèles à l'équateur, décrits par les étoiles sur l'horizon. Tous les lieux de la terre, qui ont leur zénith sur la circonférence de ce méridien, forment le méridien terrestre correspondant. Vu l'immense distance des étoiles, les verticales élevées de chacun de ces lieux, peuvent être censées parallèles au plan du méridien céleste; on peut donc définir le méridien terrestre, une courbe formée par la jonction des pieds de toutes les verticales parallèles au plan du méridien céleste. Cette courbe est toute entière dans ce plan, lorsque la terre est un solide de révolution : dans tout autre cas, elle s'en écarte; et généralement, elle est une de ces lignes que les géomètres ont nommées courbes à double courbure.

Le méridien terrestre n'est pas exactement la ligne que déterminent les mesures trigonométriques, dans le sens du méridien céleste. Le premier côté de la ligne mesurée, est tangent à la surface de la terre, et parallèle au plan du méridien céleste. Si l'on prolonge ce côté, jusqu'à la rencontre d'une verticale infiniment voisine, et qu'ensuite, on plie ce prolongement jusqu'au pied de la verticale; on formera le second côté de la courbe, et ainsi des autres. La ligne ainsi tracée est la plus courte que l'on puisse mener sur la surface de la terre, entre deux points quelconques pris sur cette ligne : elle n'est dans le plan du méridien céleste et ne se confond avec le méridien terrestre, que dans le cas où la terre est un solide de révolution; mais la différence entre la longueur de cette ligne, et celle de l'arc correspondant du méridien terrestre, est si petite, qu'elle peut être négligée sans erreur sensible.

La figure de la terre étant fort compliquée; il importe d'en multiplier les mesures dans tous les sens, et dans le plus grand nombre de lieux qu'il est possible. On peut toujours, à chaque point de sa surface, concevoir un ellipsoïde osculateur qui se confonde sensiblement avec elle, dans une petite étendue autour du point d'osculation. Des arcs terrestres mesurés dans le sens des méridiens et des perpendiculaires aux méridiens, feront connaître la nature et la position de cet ellipsoïde qui peut n'être pas un solide de révolution, et varier sensiblement à de grandes distances. Mais on aura sur cet objet, des notions plus certaines; si, comme il est à desirer, on mesure dans la plus grande largeur de la France, une perpendiculaire à la méridienne de l'Observatoire, avec les mêmes moyens dont on vient de faire usage, pour la mesure de cette méridienne; et si l'on détermine avec précision, sur divers points de cette perpendiculaire, la hauteur du pôle, et la direction de la courbe, par rapport au méridien.

Quelle que soit la nature des méridiens terrestres, par cela seul que les degrés vont en diminuant des pôles à l'équateur; la terre est aplatie dans le sens de ses pôles, c'est-à-dire que l'axe des pôles est moindre que celui de l'équateur. Pour le faire voir, supposons que la terre soit un solide de révolution, et représentons-nous le rayon

du degré du pôle boréal, et la suite de tous ces rayons depuis le pôle jusqu'à l'équateur, rayons qui par la supposition, diminuent sans cesse. Il est visible que ces rayons forment par leurs intersections consécutives, une courbe qui d'abord tangente à l'axe des pôles au-delà de l'équateur relativement au pôle boréal, tourne sa convexité vers cet axe, en s'élevant vers la surface terrestre, jusqu'à ce que le rayon du degré du méridien prenne une direction perpendiculaire à la première : alors il est dans le plan de l'équateur. Si l'on conçoit le rayon du degré polaire, flexible et enveloppant successivement les arcs de la courbe que nous venons de considérer; son extrémité décrira le méridien terrestre, et sa partie interceptée entre le méridien et la courbe, sera le rayon correspondant du degré du méridien : cette courbe est ce que les géomètres nomment développée du méridien. Considérons maintenant, comme le centre de la terre, l'intersection du diamètre de l'équateur et de l'axe du pôle; la somme des deux tangentes à la développée du méridien, menées de ce centre, la première suivant l'axe du pôle, et la seconde suivant le diamètre de l'équateur, sera plus grande que l'arc de la développée qu'elles comprennent entre elles; or le rayon mené du centre de la terre au pôle boréal, est égal au rayon du degré polaire, moins la première tangente : le demi - diamètre de l'équateur est égal au rayon du degré du méridien à l'équateur, plus la seconde tangente : l'excès du demi-diamètre de l'équateur sur le rayon terrestre du pôle, est donc égal à la somme de ces tangentes, moins l'excès du rayon du degré polaire, sur le rayon du degré du méridien à l'équateur : ce dernier excès est l'arc même de la développée, arc qui est moindre que la somme des tangentes extrêmes; donc l'excès du demi-diamètre de l'équateur, sur le rayon mené du centre de la terre au pôle boréal, est positif. On prouvera de même que l'excès de ce demi-diamètre sur le rayon mené du centre de la terre au pôle austral est positif; l'axe entier des pôles est donc moindre que le diamètre de l'équateur, ou, ce qui revient au même, la terre est aplatie dans le sens des pôles.

En considérant chaque partie du méridien, comme un arc trèspetit de sa circonférence osculatrice; il est facile de voir que le rayon mené du centre de la terre, à l'extrémité de l'arc, la plus voisine du pôle, est plus petit que le rayon mené du même centre à l'autre extrémité; d'où il suit que les rayons terrestres vont en croissant, des pôles à l'équateur, si comme toutes les observations l'indiquent, les degrés du méridien augmentent de l'équateur aux pôles.

La différence des rayons des degrés du méridien au pôle et à l'équateur, est égale à la différence des rayons terrestres correspondans, plus à l'excès du double de la développée, sur la somme des deux tangentes extrêmes, excès qui est évidemment positif; ainsi les degrés des méridiens croissent de l'équateur aux pôles, dans un plus grand rapport que celui de la diminution des rayons terrestres. Il est clair que ces démonstrations ont encore lieu dans le cas où les deux hémisphères boréal et austral ne seraient pas égaux, et semblables, et il est facile de les étendre au cas où la terre ne serait pas un solide de révolution.

On a élevé des principaux lieux de la France, sur la méridienne de l'Observatoire de Paris, des courbes tracées de la même manière que cette ligne, avec cette différence, que le premier côté toujours tangent à la surface de la terre, au lieu d'être parallèle au plan du méridien céleste de l'Observatoire de Paris, lui est perpendiculaire. C'est par la longueur de ces courbes, et par les distances de l'Observatoire, aux points où elles rencontrent la méridienne, que les positions de ces lieux ont été déterminées. Ce travail le plus utile que l'on ait fait en géographie, est un modèle que les nations éclairées s'empressent d'imiter, et qui sera bientôt étendu à l'Europe entière.

On ne peut pas fixer par des opérations géodésiques, les positions respectives des lieux séparés par de vastes mers, et il faut alors recouriraux observations célestes. La connaissance de ces positions est un des plus grands avantages que l'astronomie nous ait procurés. Pour y parvenir, on a suivi la méthode dont on avait fait usage pour former le catalogue des étoiles, en concevant sur la surface terrestre, des cercles correspondans à ceux que l'on avait imaginés dans le ciel. Ainsi l'axe de l'équateur céleste traverse la surface de la terre dans deux points diamétralement opposés qui ont chacun, à leur zénith, un des pôles du monde, et que l'on peut considérer comme les pôles de la terre. L'intersection du plan de l'équateur

celleste avec cette surface, est une circonférence qui peut être regardée comme l'équateur terrestre; les intersections de tous les plans des méridiens célestes avec la même surface, sont autant de lignes courbes qui se réunissent aux pôles, et qui sont les méridiens terrestres, si la terre est un solide de révolution, ce que l'on peut supposer en géographie sans erreur sensible. Enfin, de petites circonférences tracées sur la terre, parallèlement à l'équateur, sont les parallèles terrestres; et celui d'un lieu quel-conque, répond au parallèle céleste qui passe à son zénith.

La position d'un lieu sur la terre, est déterminée par sa distance à l'équateur, ou par l'arc du méridien terrestre compris entre l'équateur et son parallèle, et par l'angle que forme son méridien, avec un premier méridien dont la position est arbitraire et auquel on rapporte ainsi tous les autres. Sa distance à l'équateur dépend de l'angle compris entre son zénith et l'équateur céleste, et cet angle est évidemment égal à la hauteur du pôle sur l'horizon: cette hauteur est ce que l'on nomme latitude en géographie. La longitude est l'angle que le méridien d'un lieu fait avec le premier méridien; c'est l'arc de l'équateur, compris entre les deux méridiens. Elle est orientale ou occidentale, suivant que le lieu est à l'orient ou à l'occident du premier méridien.

L'observation de la hauteur du pôle donne la latitude: la longitude se détermine au moyen d'un phénomène céleste observé à-la-fois sur les méridiens dont on cherche la position respective. Si le méridien d'où l'on compte les longitudes, est à l'orient de celui dont on cherche la longitude, le soleil y parviendra plus tôt au méridien céleste; si, par exemple, l'angle formé par les méridiens terrestres, est le quart de la circonférence; la différence entre les instans du midi, sur ces méridiens, sera le quart du jour. Supposons donc que sur chacun d'eux, on observe un phénomène qui arrive au même instant physique pour tous les lieux de la terre, tel que le commencement ou la fin d'une éclipse de lune ou des satellites de Jupiter; la différence des heures que compteront les observateurs, au moment du phénomène, sera au jour entier, comme l'angle formé par les deux méridiens est à la circonférence. Les éclipses de soleil et les occultations des étoiles par la lune,

fournissent des moyens plus exacts pour avoir les longitudes, par la précision avec laquelle on peut observer le commencement ou la fin de ces phénomènes : ils n'arrivent pas, à la vérité, au même instant physique, pour tous les lieux de la terre; mais les élémens du mouvement lunaire sont suffisamment connus, pour tenir compte exactement de cette différence.

Il n'est pas nécessaire pour déterminer la longitude d'un lieu, que le phénomène céleste observé, le soit en même temps sous le premier méridien : il suffit qu'on l'observe sous un méridien dont la position à l'égard du premier méridien soit connue. C'est ainsi qu'en liant les méridiens, les uns aux autres, on est parvenu à déterminer la position respective des points les plus éloignés de la terre.

Déjà les longitudes et les latitudes d'un grand nombre de lieux ont été déterminées par des observations astronomiques : de grandes erreurs sur la situation et l'étendue des pays anciennement connus, ont été corrigées : on a fixé la position des nouvelles contrées que l'intérêt du commerce et l'amour des sciences ont fait découvrir. Mais quoique les voyages entrepris dans ces derniers temps, aient considérablement accru nos connaissances géographiques; il reste beaucoup à découvrir encore. L'intérieur de l'Afrique et celui de la Nouvelle-Hollande, renferment des pays immenses, entièrement inconnus : nous n'avons que des relations incertaines et souvent contradictoires sur beaucoup d'autres à l'égard desquels la géographie, livrée jusqu'ici au hasard des conjectures, attend de l'astronomie, des lumières pour fixer irrévocablement leur position.

La longitude et la latitude ne suffisent pas pour déterminer la position d'un lieu sur la terre : il faut joindre à ces deux ordonnées horizontales, une troisième ordonnée verticale, qui exprime sa hauteur au-dessus du niveau des mers. C'est ici que le baromètre trouve sa plus utile application : des observations nombreuses et précises de cet instrument, répandront sur la figure de la terre en hauteur, les mêmes lumières que l'astronomie a déjà données sur ses deux autres dimensions.

C'est principalement au navigateur, lorsqu'au milieu des mers, il n'a pour guide que les astres et sa boussole, qu'il importe de connaître sa position, celle des lieux où il doit aborder et des

écueils qui se rencontrent sur sa route. Il peut aisément connaître sa latitude, par l'observation de la hauteur des astres : les heureuses inventions de l'octant et du cercle répétiteur, ont donné à ce genre d'observations, une exactitude inespérée. Mais le ciel, en vertu de son mouvement diurne, se présentant dans un jour, à peu près de la même manière, à tous les points de son parallèle; il est difficile au navigateur, de fixer le point auquel il répond. Pour suppléer aux observations célestes, il mesure sa vîtesse et la direction de son mouvement; il en conclut sa marche dans le sens des parallèles, et en la comparant avec ses latitudes observées, il détermine sa longitude relativement au lieu de son départ. L'inexactitude de cette méthode, l'expose à des erreurs qui peuvent lui devenir funestes, quand il s'abandonne aux vents, pendant la nuit, près des côtes ou des bancs dont il se croit encore éloigné par son estime. C'est pour le mettre à l'abri de ces dangers, qu'aussitôt que les progrès des arts et de l'astronomie, ont pu faire espérer des méthodes pour avoir les longitudes à la mer; les nations commercantes se sont empressées de diriger par de puissans encouragemens, les vues des savans et des artistes, sur cet important objet. Leurs vœux ont été remplis par l'invention des montres marines, et par l'extrême précision à laquelle on a porté les tables lunaires, deux moyens bons en eux-mêmes, et qui deviennent encore meilleurs, en se prêtant un mutuel appui.

Une montre bien réglée dans un port dont la position est connue, et qui transportée sur un vaisseau, conserverait la même marche, indiquerait à chaque instant, l'heure que l'on compte dans ce port. Cette heure étant comparée à celle que l'on observe à la mer; le rapport de leur différence, au jour entier, serait comme on l'a vu, celui de la différence des longitudes, à la circonférence. Mais il était difficile d'avoir de pareilles montres : les mouvemens irréguliers du vaisseau, les variations de la température, et les frottemens inévitables et très-sensibles dans des machines aussi délicates, étaient autant d'obstacles qui s'opposaient à leur exactitude. On est heureusement parvenu à les vaincre, et à exécuter des montres qui, pendant plusieurs mois, conservent une marche à très-peu près uniforme, et qui donnent ainsi, le moyen le plus

(

simple d'avoir les longitudes à la mer; et comme ce moyen est d'autant plus précis, que le temps pendant lequel on emploie ces montres sans vérifier leur marche, est plus court; elles sont très-utiles pour déterminer la position respective des lieux fort voisins: elles ont même, à cet égard, quelque avantage sur les observations astronomiques dont la précision n'est point augmentée par le peu d'éloignement des observateurs.

Les éclipses des satellites de Jupiter, qui se renouvellent fréquemment, offriraient au navigateur, un moyen facile de connaître sa longitude, s'il pouvait les observer à la mer; mais les tentatives que l'on a faites pour surmonter les difficultés qu'opposent à ce genre d'observations, les mouvemens du vaisseau, ont été jusqu'à présent infructueuses. La navigation et la géographie ont cependant retiré de grands avantages, de ces éclipses, et surtout de celles du premier satellite, dont on peut observer avec précision, le commencement ou la fin. Le navigateur les emploie avec succès dans ses relâches : il a besoin, à la vérité, de connaître l'heure à laquelle la même éclipse qu'il observe, serait vue sous un méridien connu; puisque la différence des heures que l'on compte sous les méridiens, est ce qui détermine la différence de leurs longitudes. Mais les tables du premier satellite de Jupiter, considérablement perfectionnées de nos jours, donnent pour le méridien de Paris, les instans de ses éclipses, avec une précision presque égale à celle des observations mêmes.

L'extrême difficulté d'observer sur mer, ces éclipses, a forcé de recourir aux autres phénomènes célestes parmi lesquels le mouvement de la lune est le seul qui puisse servir à la détermination des longitudes terrestres. La position de la lune, telle qu'on l'observerait du centre de la terre, peut aisément se conclure de la mesure de ses distances angulaires au soleil ou aux étoiles : les tables de son mouvement donnent ensuite l'heure que l'on compte sous le premier méridien, lorsque l'on y observe la même position; et le navigateur, en la comparant à l'heure qu'il compte sur le vaisseau, au moment de son observation, détermine sa longitude, par la différence de ces heures.

Pour apprécier l'exactitude de cette méthode, on doit considérer qu'en vertu de l'erreur de l'observation, le lieu de la lune, déterminé par l'observateur, ne répond pas exactement à l'heure désignée par son horloge; et qu'en vertu de l'erreur des tables, ce même lieu ne se rapporte pas à l'heure correspondante qu'elles indiquent sous le premier méridien; la différence de ces heures n'est donc pas celle que donneraient une observation et des tables rigoureuses. Supposons que l'erreur commise sur cette différence, soit d'une minute: dans cet intervalle, quarante minutes de l'équateur, passent au méridien; c'est l'erreur correspondante sur la longitude du vaisseau, et qui, à l'équateur, est d'environ quarante mille mètres; mais elle est moindre sur les parallèles: d'ailleurs, elle peut être diminuée par des observations multipliées des distances de la lune au soleil et aux étoiles, et répétées pendant plusieurs jours, pour compenser et détruire les unes par les autres, les erreurs de l'observation et des tables.

Il est visible que les erreurs sur la longitude, correspondantes à celles des tables et de l'observation, sont d'autant moindres, que le mouvement de l'astre est plus rapide; ainsi les observations de la lune périgée, sont à cet égard, préférables à celles de la lune apogée. Si l'on employait le mouvement du soleil, treize fois environ, plus lent que celui de la lune, les erreurs sur la longitude seraient treize fois plus grandes; d'où il suit que de tous les astres, la lune est le seul dont le mouvement soit assez prompt pour servir à la détermination des longitudes à la mer; on voit donc combien il était utile d'en perfectionner les tables.

Il est à desirer que tous les peuples de l'Europe, au lieu de rapporter au méridien de leur premier observatoire, les longitudes géographiques, s'accordent à les compter d'un même méridien donné par la nature elle-même, pour le retrouver sûrement dans tous les temps. Cet accord introduirait dans leur géographie, la même uniformité que présentent déjà leur calendrier et leur arithmétique, uniformité qui étendue aux nombreux objets de leurs relations mutuelles, formerait de ces peuples divers, une immense famille. Ptolémée avait fait passer son premier méridien, par les Canaries, comme étant la limite occidentale des pays alors connus. Cette raison de préférence ne subsiste plus depuis la découverte de l'Amérique. Mais l'une de ces îles nous offre un des points les plus remarquables de la terre, par sa hauteur et son isolement, le

sommet du pic de Ténériffe. On pourrait prendre avec les Hollandais, son méridien pour origine des longitudes terrestres, en déterminant par un très-grand nombre d'observations astronomiques, sa position relativement aux principaux observatoires. Mais soit que l'on convienne ou non, d'un méridien commun; il sera utile aux siècles à venir, de connaître leur position avec exactitude, par rapport au sommet de quelques montagnes toujours reconnaissables par leur hauteur et leur solidité, telles que le Mont-Blanc qui domine la charpente immense et inaltérable de la chaîne des Alpes.

Un phénomène très-remarquable dont nous devons la connaissance aux voyages astronomiques, est la variation de la pesanteur à la surface de la terre. Cette force singulière anime dans le même lieu, tous les corps proportionnellement à leurs masses, et tend à leur imprimer dans le même temps, des vîtesses égales. Il est impossible au moyen d'une balance, de reconnaître ses variations; puisqu'elles affectent également le corps que l'on pèse, et le poids auquel on le compare; mais on peut les déterminer en comparant ce poids, à une force constante telle que le ressort de l'air à la même température. Ainsi en transportant dans divers lieux, un manomètre rempli d'un volume d'air dont la tension élève une colonne de mercure dans un tube intérieur; il est visible que le poids de cette colonne devant toujours faire équilibre au ressort de cet air; sa hauteur, lorsque la température sera la même, sera réciproque à la force de la pesanteur dont elle indiquera conséquemment les variations. Les observations du pendule offrent encore un moyen très-précis pour les déterminer; car il est clair que ses oscillations doivent être plus lentes dans les lieux ou la pesanteur est moindre. Cet instrument dont l'application aux horloges a été l'une des principales causes des progrès de l'astronomie moderne et de la géographie, consiste dans un corps suspendu à l'extrémité d'un fil ou d'une verge mobile autour d'un point fixe placé à l'autre extrémité. On écarte un peu l'instrument, de sa situation verticale : en l'abandonnant ensuite à l'action de la pesanteur, il fait de petites oscillations qui sont à très-peu près de même durée, malgré la différence des arcs décrits. Cette durée dépend de la grandeur et de la figure du corps suspendu, de la

masse et de la longueur de la verge; mais les géomètres ont trouvé des règles générales pour déterminer par l'observation des oscillations d'un pendule composé, de figure quelconque, la longueur d'un pendule dont les oscillations auraient une durée connue, et dans lequel la masse de la verge serait supposée nulle par rapport à celle du corps considéré comme un point infiniment dense. C'est à ce pendule idéal, nommé pendule simple, que l'on a rapporté toutes les expériences du pendule, faites dans divers lieux de la terre.

Richer envoyé en 1672, à Cayenne, par l'Académie des Sciences, pour y faire des observations astronomiques, trouva que son horloge réglée à Paris sur le temps moyen, retardait, chaque jour, à Cayenne, d'une quantité sensible. Cette intéressante observation donna la première preuve directe de la diminution de la pesanteur à l'équateur. Elle a été répétée avec beaucoup de soin dans un grand nombre de lieux, en tenant compte de la résistance de l'air et de la température. Il résulte de toutes les mesures observées du pendule à secondes, qu'il augmente de l'équateur aux pôles.

En prenant pour unité, la longueur du pendule qui fait à l'observatoire de Paris, cent mille oscillations par jour, on a trouvé sa longueur égale à 0,99669 à l'équateur au niveau des mers, tandis qu'en Laponie à 74°,22 de hauteur du pôle, on l'a observée égale à 1,00137. Borda, par des expériences très-exactes et très-multipliées, a trouvé que la longueur prise pour unité, réduite au vide, est de 0^m.,741887. Biot et Mathieu ayant répété ces expériences, ont trouvé 0^m.,7419076 pour cette longueur, ce qui diffère très-peu du résultat précédent.

L'accroissement des longueurs du pendule, en allant de l'équateur aux pôles, est sensible même sur les divers points du grand arc du méridien qui traverse la France, comme on le voit par le tableau suivant, résultat des expériences nombreuses et précises faites par Biot, Arago et Mathieu.

Lieux.	Hauteur du pôle.	Élévation au-dessus de la mer.	Longueur observée du pendule à secondes.
Formentera	42°,96	196m.	om-,7412061
Bordeaux	49 ,82	ő	0 ,7416151
Paris	54,26	28	0 ,7419076
Dunkerque	56 ,6 y	9.	0 ,7420865

Les longueurs observées à Dunkerque et à Bordeaux, donnent par l'interpolation, 0^m.,7416274 pour la longueur du pendule à secondes, sur les côtes de France, au niveau de la mer, à cinquante degrés de hauteur du pôle. Cette longueur et celle du degré du méridien, dont le milieu répond au même point, serviront à retrouver nos mesures, si par la suite des temps, elles viennent à s'altérer.

L'accroissement du pendule offre plus de régularité, que celui des degrés du méridien: il s'écarte moins du rapport des carrés des sinus de la hauteur du pôle; soit que sa mesure plus facile que celle des degrés soit moins sujette à erreur, soit que les causes perturbatrices de la régularité de la terre produisent moins d'effet sur la pesanteur. En comparant entre elles, toutes les observations faites jusqu'à présent sur cet objet, dans divers lieux de la terre, on trouve que si l'on prend pour unité, la longueur du pendule à l'équateur, son accroissement de l'équateur aux pôles est égal au produit de 0,005515 par le carré du sinus de la latitude.

On a remarqué encore, au moyen du pendule, une petite diminution dans la pesanteur, au sommet des hautes montagnes. Bouguer a fait sur cet objet, un grand nombre d'expériences au Pérou. Il a trouvé que la pesanteur à l'équateur et au niveau de la mer, étant exprimée par l'unité; elle est 0,999249 à Quito élevé de 2857^m au-dessus de ce niveau, et 0,998816 sur le Pichincha, à 4744^m de hauteur. Cette diminution de la pesanteur, à des hauteurs toujours très-petites relativement au rayon terrestre, donne lieu de penser que cette force diminue considérablement, à de grandes distances du centre de la terre.

Les observations du pendule, en fournissant une longueur invariable et facile à retrouver dans tous les temps, ont fait naître l'idée de l'employer comme mesure universelle. On ne peut voir le nombre prodigieux de mesures en usage, non-seulement chez les différens peuples, mais dans la même nation; leurs divisions bizarres et incommodes pour les calculs; la difficulté de les connaître et de les comparer; enfin l'embarras et les fraudes qui en résultent dans le commerce; sans regarder comme l'un des plus grands services que les gouvernemens puissent rendre à la société,

l'adoption d'un système de mesures dont les divisions uniformes se prêtent le plus facilement au calcul, et qui dérivent de la manière la moins arbitraire, d'une mesure fondamentale indiquée par la nature elle-même. Un peuple qui se donnerait un semblable système, réunirait à l'avantage d'en recueillir les premiers fruits, celui de voir son exemple suivi par les autres peuples dont il deviendrait ainsi le bienfaiteur; car l'empire lent mais irrésistible de la raison, l'emporte, à la longue, sur les jalousies nationales, et surmonte tous les obstacles qui s'opposent au bien généralement senti. Tels furent les motifs qui déterminèrent l'Assemblée constituante, à charger de cet important objet, l'Académie des Sciences. Le nouveau système des poids et mesures, est le résultat du travail de ses commissaires secondés par le zèle et les lumières de plusieurs membres de la représentation nationale.

L'identité du calcul décimal et de celui des nombres entiers, ne laisse aucun doute sur les avantages de la division de toutes les espèces de mesures, en parties décimales: il suffit pour s'en convaincre, de comparer les difficultés des multiplications et des divisions complexes, avec la facilité des mêmes opérations sur les nombres entiers, facilité qui devient plus grande encore au moyen des logarithmes dont on peut rendre, par des instrumens simples et peu coûteux, l'usage extrêmement populaire. A la vérité, notre échelle arithmétique n'est point divisible par trois et par quatre, deux diviseurs que leur simplicité rend très-usuels. L'addition de deux nouveaux caractères eût suffi pour lui procurer cet avantage; mais un changement aussi considérable aurait été infailliblement rejeté avec le système de mesures qu'on lui aurait subordonné. D'ailleurs, l'échelle duodécimale a l'inconvénient d'exiger que l'on retienne les produits deux à deux des onze premiers nombres; ce qui surpasse l'ordinaire étendue de la mémoire, à laquelle l'échelle décimale est bien proportionnée. Enfin, on aurait perdu l'avantage qui probablement a donné naissance à notre arithmétique, celui de faire servir à la numération, les doigts de la main. On ne balança donc point à adopter la division décimale; et pour mettre de l'uniformité dans le système entier des mesures, on résolut de les dériver toutes, d'une même mesure linéaire et de ses divisions décimales.

La question fut ainsi réduite au choix de cette mesure universelle à laquelle on donna le nom de mètre.

La longueur du pendule et celle du méridien, sont les deux principaux moyens qu'offre la nature, pour fixer l'unité des mesures linéaires. Indépendans l'un et l'autre, des révolutions morales, ils ne peuvent éprouver d'altération sensible, que par de très-grands changemens dans la constitution physique de la terre. Le premier moyen, d'un usage facile, a l'inconvénient de faire dépendre la mesure de la distance, de deux élémens qui lui sont hétérogènes, la pesanteur et le temps dont la division est d'ailleurs arbitraire, et dont on ne pouvait pas admettre la division sexagésimale, pour fondement d'un système décimal de mesures. On se détermina donc pour le second moyen qui paraît avoir été employé dans la plus haute antiquité; tant il est naturel à l'homme, de rapporter les nresures itinéraires, aux dimensions mêmes du globe qu'il habite; ensorte qu'en se transportant sur ce globe, il connaisse par la seule dénomination de l'espace parcouru, le rapport de cet espace, au circuit entier de la terre. On trouve encore à cela, l'avantage de faire correspondre les mesures nautiques avec les mesures célestes. Souvent le navigateur a besoin de déterminer l'un par l'autre, le chemin qu'il a décrit, et l'arc céleste compris entre les zéniths des lieux de son départ et de son arrivée; il est donc intéressant que l'une de ces mesures soit l'expression de l'autre, à la différence près de leurs unités. Mais pour cela, l'unité fondamentale des mesures linéaires doit être une partie aliquote du méridien terrestre, qui corresponde à l'une des divisions de la circonférence. Ainsi le choix du mêtre fut réduit à celui de l'unité des angles.

L'angle droit est la limite des inclinaisons d'une ligne sur un plan, et de la hauteur des objets sur l'horizon: d'ailleurs, c'est dans le premier quart de la circonférence, que se forment les sinus et généralement toutes les lignes que la trigonométrie emploie, et dont les rapports avec le rayon, ont été réduits en tables; il était donc naturel de prendre l'angle droit, pour l'unité des angles, et le quart de la circonférence, pour l'unité de leur mesure. On le divisa en parties décimales; et pour avoir des mesures correspondantes sur la terre, on divisia dans les mêmes parties, le quart du méridien

terrestre, ce qui a été fait dans l'antiquité; car la mesure de la terre. citée par Aristote, et dont l'origine est inconnue, donne cent mille stades, au quart du méridien. Il ne s'agissait plus que d'avoir exactement sa longueur. Ici, deux questions se présentaient à résoudre. Quel est le rapport d'un arc du méridien, mesuré à une latitude donnée, au méridien entier? Tous les méridiens sont-ils semblables? Dans les hypothèses les plus naturelles sur la constitution du sphéroïde terrestre, la différence des méridiens est insensible, et le degré décimal dont le milieu répond à cinquante degrés de latitude, est la centième partie du quart du méridien : l'erstur de ces hypothèses, ne pourrait influer que sur les distances géographiques où elle n'est d'aucune importance. On pouvait donc conclure la grandeur du quart du méridien, de celle de l'arc qui traverse la France depuis Dunkerque jusqu'aux Pyrénées, et qui fut mesuré en 1740 par les académiciens français. Mais une nouvelle mesure d'un arc plus grand encore, faite avec des moyens plus exacts, devant inspirer en fayeur du nouveau système des poids et mesures, un intérêt propre à le répandre; on résolut de mesurer l'arc du méridien terrestre, compris entre Dunkerque et Barcelone. Ce grand arc prolongé au sud jusqu'à Formentera, et au nord, jusqu'au parallèle de Greenvich, et dont le milieu répond à très-peu près au parallèle moyen entre le pôle. et l'équateur, a donné la longueur du quart du méridien, égale à 5130740 toises. On a pris la dix-millionième partie de cette longueur, pour le mêtre ou l'unité des mesures linéaires. La décimale au-dessus, eût été trop grande; la décimale au-dessous, trop petite; et le mêtre dont la longueur est de o¹⁰¹,513074 remplace avec avantage, la toise et l'aune, deux de nos mesures les plus usuelles.

Toutes les mesures dérivent du mêtre de la manière la plus simple : les mesures linéaires en sont des multiples et des sous-multiples décimaux.

L'unité des mesures de capacité, est le cube de la dixième partie du mêtre : on lui a donné le nom de litre.

L'unité des mesures superficielles pour le terrein, est un carré dont le côté est de dix mètres : elle se nomme are.

On a nommé stère, un volume de bois de chauffage, égal à un mêtre cube.

L'unité de poids, que l'on a nommée gramme, est le poids de la millionième partie d'un mêtre d'eau distillée et considérée dans le vide et à son maximum de densité. Par une singularité remarquable, ee maximum ne répond point au degré de congélation, mais au-dessus, vers quatre degrés du thermomètre. En se refroidissant au-dessous de cette température, l'eau commence à se dilater de nouveau, et se prépare ainsi à l'accroissement de volume, qu'elle reçoit dans son passage de l'état fluide à l'état solide. On a préféré l'eau comme étant une des substances les plus homogènes, et celle que l'on peut amener le plus facilement à l'état de pureté. Le Feyre-Gineau a déterminé le gramme, par une longue suite d'expériences délicates sur la pesanteur spécifique d'un cylindre creux de cuivre, dont il a mesuré le volume, avec un soin extrême: il en résulte que la livre supposée la vingt-cinquième partie de la pile de cinquante marcs, que l'on conserve à la Monnaie de Paris, est au gramme, dans le rapport de 489,5058 à l'unité. Le poids de mille grammes, que l'on nomme kilogramme ou livre décimale, est donc égal à la livre, poids de marc, multipliée par 2,04288.

Pour conserver les mesures de longueur et de poids; des étalons du mêtre et du kilogramme exécutés sous les yeux des commissaires chargés de déterminer ces mesures, et vérifiés par eux, sont déposés dans les Archives nationales et à l'Observatoire de Paris. Les étalons du mêtre ne le représentent qu'à un degré déterminé de température: on a choisi celui de la glace fondante, comme le plus fixe et le plus indépendant des modifications de l'atmosphère. Les étalons du kilogramme ne représentent son poids, que dans le vide, ou à une pression insensible de l'atmosphère. Pour retrouver le mêtre dans tous les temps, sans être obligé de recourir à la mesure du grand arc qui l'a donné; il importait de fixer son rapport à la longueur du pendule à secondes: cet objet a été rempli par Borda, de la manière la plus précise.

Toutes les mesures étant comparées sans cesse, à la monnaie; il était surtout important de la diviser en parties décimales. On a donné à son unité, le nom de franc d'argent : sa dixième partie s'appelle décime, et sa centième partie, centime. On a rapporté au franc les valeurs des pièces de monnaie de cuivre et d'or.

Pour faciliter le calcul de l'or et de l'argent fin, contenus dans les pièces de monnaie; on a fixé l'alliage, au dixième de leur poids, et l'on a égalé celui du franc, à cinq grammes. Ainsi le franc étant un multiple exact de l'unité de poids, il peut servir à peser les corps; ce qui est utile au commerce.

Enfin, l'uniformité du système entier des paids et mesures, a exigé que le jour sût divisé en dix heures, l'heure en cent minutes; et la minute en cent secondes. Cette division qui va devenir nécessaire aux astronomes, est moins avantageuse dans la vie civile ou l'on a peu d'occasions d'employer le temps, comme multiplicateur ou comme diviseur. La difficulté de l'adapter aux horloges et aux montres, et nos rapports commerciaux en horlogerie avec les étrangers, ont fait suspendre indéfiniment son usage. On peut croire cependant qu'à la longue, la division décimale du jour, remplacera sa division actuelle qui contraste trop avec les divisions des autres mesures, pour n'être pas abandonnée.

Tel est le nouveau système des poids et mesures, que les savans ont offert à la Convention nationale qui s'est empressée de le sanctionner. Ce système fondé sur la mesure des méridiens terrestres, convient également à tous les peuples. Il n'a de rapport avec la France, que par l'arc du méridien qui la traverse. Mais la position de cet arc est si avantageuse, que les savans de toutes les nations, réunis pour fixer la mesure universelle, n'eussent point fait un autre choix. Pour multiplier les avantages de ce système, et pour le rendre utile au monde entier; le Gouvernement français a invité les puissances étrangères, à prendre part à un objet d'un intérêt aussi général. Plusieurs ont envoyé à Paris, des savans distingués qui réunis aux commissaires de l'Institut national, ont déterminé par la discussion des observations et des expériences, les unités fondamentales de poids et de longueur; ensorte que la fixation de ces unités, doit être regardée comme un ouvrage commun aux savans qui y ont concouru, et aux peuples qu'ils ont représentés. Il est donc permis d'espérer qu'un jour, ce système qui réduit toutes les mesures et leurs calculs, à l'échelle et aux opérations les plus simples de l'arithmétique décimale, sera aussi généralement adopté, que le système de numération dont il est le complément, et qui, of total elegan. Of galaxies (O)

sans doute, eut à surmonter les mêmes obstacles que les préjugés et les habitudes opposent à l'introduction des nouvelles mesures.

Quelle circonstance peut être plus favorable à leur adoption, que celle où Napoléon-le-Grand réunit la moitié de l'Europe sous son empire, et par l'ascendant de son exemple, exerce sur l'autre moitié, la plus heureuse influence? Grâce à son gênie, l'Europe entière ne formera bientôt, qu'une immense famille, unie par la même religion, le même code de lois et les mêmes mésures; et la postérité qui jouira pleinement de ces avantages, ne prononcera qu'avec admiration et reconnaissance, le nom du héros son bien-faiteur.

CHAPITRE XV.

Du flux et du reflux de la mer, ou des variations diurnés de sa figure.

Quoique la terre et les fluides qui la recouvrent, aient dû prendre depuis long-temps, l'état qui convient à l'équilibre des forces qui les animent; cependant, la figure de la mer change à chaque instant du jour, par des oscillations régulières et périodiques, connues sous le nom de flux et reflux de la mer. C'est une chose vraiment étonnante, que de voir dans un temps calme et par un ciel serein, la vive agitation de cette grande masse fluide dont les flots viennent se briser avec impétuosité contre les rivages. Ce spectacle invite à la réflexion, et fait naître le desir d'en pénétrer la cause; mais pour ne pas s'égurer dans de vaines hypothèses, il faut avant tout, connaître les lois de ce phénomène, et le suivre dans tous ses détails.

Au commencement du dernier siècle, et sur l'invitation de l'Académie des Sciences, on fit dans nos ports, un grand nombre d'observations du flux et du reflux de la mer: elles furent continuées, chaque jour, à Brest pendant six années consécutives, et elles forment par leur nombre, et par la grandeur et la régularité des marées dans ce port, le requeil le plus complet et le plus utile que nous ayons en ce genre. Mille causes accidentelles pouvant altérer la marche de la nature; dans ces phénomènes; il est nécessaire de considérer à-la-fois un grand nombre d'observations, afin que les effets des causes passagères venant à se compenser mutuellement, les résultats moyens né laissent apercevoir que les effets réguliers ou constans. Il faut encoré, par une combinaison avantageuse des observations, faire ressortir les phénomènes que l'on veut déter-

miner, et les isoler pour les mieux connaître. C'est en discutant ainsi les observations, que je suis parvenu aux résultats suivans qui ne laissent aucun doute.

La mer s'élève et s'abaisse deux fois, dans chaque intervalle de temps compris entre deux retours consécutifs de la lune, au méridien supérieur. L'intervalle moyen de ces retours est de 1,035050; ainsi l'intervalle moyen entre deux pleines mers consécutives est de 0,517525, ensorte qu'il y a des jours solaires où l'on n'observe qu'une seule marée. Le moment de la basse mer, divise à peu près également cet intervalle: à Brest, la mer emploie neuf ou dix minutes de moins, à monter qu'à descendre. Comme dans toutes les grandeurs susceptibles d'un maximum ou d'un minimum, l'adcroissement et la diminution de la marée vers ces limites, sont proportionnels aux carrés des temps écoulés depuis la haute ou la basse mer.

La hauteur de la pleine mer, n'est pas constamment la même; elle varie, chaque jour, et ses variations ont un rapport évident avec les phases de la lune; elle est la plus grande vers le temps des pleines et des nouvelles lunes; ensuite elle diminue et devient la plus petite vers les quadratures. La plus haute marée à Brest, n'a point lieu, le jour même de la sysigie, mais un jour et demi après; ensorte; que si la sysigie arrive au moment d'une pleine mer, la troisième marée qui la suit, est la plus grande. Pareillement, si la quadrature arrive au moment de la pleine mer, la troisième marée qui la suit, est la plus petite. Ce phénomène s'observe à peu près également dans tous les ports de France, quoique les heures des marées y soient fort différentes.

Plus la mer s'élève lorsqu'elle est pleine, plus elle descend dans la basse mer suivante. Nous nommerons marée totale, la demi-somme des hauteurs de deux pleines mers consécutives, au-dessus du niveau de la basse mer intermédiaire. La valeur moyenne de cette marée totale à Brest, dans son maximum vers les sysigies, et lorsque le soleil et la lune sont à l'équateur et à leurs moyennes distances à la terre, est de 6^m,2490. Dans les mêmes circonstances, elle est de 5^m,0990 à son minimum vers les quadratures.

La distance de la lune à la terre, influe d'une manière très-sensible sur la grandeur des marées totales. Tout étant égal d'ailleurs, elles augmentent et diminuent avec le diamètre et la parallaxe lunaire, mais dans un plus grand rapport. Si ce diamètre croît d'un dixhuitième, la marée totale croît d'un huitième vers les sysigies, et d'environ un quart, vers les quadratures; et comme cette marée est dans le premier cas, deux fois plus grande que dans le second; son accroissement absolu dans ces deux cas, est le même. La plus grande variation du diamètre de la lune, soit au-dessus, soit au-dessous de sa valeur moyenne, étant un quinzième environ de cette valeur; la variation correspondante de la marée totale dans les sysigies est de sa grandeur moyenne, ou d'environ o^m,883 à Brest; ainsi l'effet du changement de la distance de la lune à la terre, est de 1^m,766 sur les marées totales de ce port.

Les variations de la distance du soleil à la terre, influent pareillement, mais d'une manière beaucoup moins sensible, sur les marées. Tout étant égal d'ailleurs; en hiver, temps où le soleil est le plus près de nous, les marées sysigies sont plus grandes, et les marées quadratures sont plus petites qu'en été où le soleil est le plus loin de la terre.

Les déclinaisons du soleil et de la lune ont une influence remarquable sur les marées : elles diminuent les marées totales des sysigies, et ces marées, à Brest, sont d'environ trois quarts de mêtre, plus petites dans les solstices, que dans les équinoxes : les marées totales des quadratures sont aussi plus petites de la même quantité, dans les équinoxes, que dans les solstices.

C'est principalement vers les maxima et les minima des marées totales, qu'il est intéressant de connaître la loi de leur variation. On vient de voir que l'instant de leur maximum à Brest, suit d'un jour et demi, la sysigie : la diminution des marées totales qui en sont voisines, est proportionnelle au carré du temps écoulé depuis cet instant, jusqu'à celui de la basse mer intermédiaire à laquelle la marée totale se rapporte; elle est de 0^m,1064, lorsque ce temps est d'un jour lunaire.

Près de l'instant du *minimum* qui suit d'un jour et demi la quadrature, l'accroissement des marées totales est proportionnel au carré du temps écoulé depuis cet instant : il est à fort peu près double de la diminution des marées totales vers leur *maximum*.

Les déclinaisons du soleil et de la lune influent très-sensiblement sur ces variations : la diminution des marées vers les sysigies des solstices, n'est qu'environ trois cinquièmes de la diminution correspondante vers les sysigies des équinoxes : l'accroissement des marées vers les quadratures, est deux fois plus grand dans les équinoxes, que dans les solstices.

On observe encore entre les marées du matin et du soir, de petites différences qui dépendent des déclinaisons du soleil et de la lune, et qui disparaissent lorsque ces astres sont dans l'équateur. Pour les reconnaître, il faut comparer les marées du premier et du second jour après la sysigie ou la quadrature : les marées trèsvoisines alors du maximum ou du minimum, varient fort peu d'un jour à l'autre, et laissent facilement apercevoir la différence des deux marées d'un même jour. On trouve ainsi qu'à Brest, dans les sysigies des solstices d'été, les marées du matin du premier et du second jour après la sysigie, sont plus petites que celles du soir, de o^m, 183 : elles sont plus grandes de la même quantité, dans les sysigies des solstices d'hiver. Pareillement, dans les quadratures de l'équinoxe d'automne, les marées du matin, du premier et du second jour après la quadrature, surpassent celles du soir, de om, 138 : elles sont plus petites de la même quantité, dans les quadratures de l'équinoxe du printemps.

Tels sont, en général, les phénomènes que les hauteurs des marées présentent dans nos ports: leurs intervalles offrent d'autres phénomènes que nous allons développer.

Quand la pleine mer a lieu à Brest, au moment de la sysigie; elle suit l'instant de minuit, ou celui du midi vrai, de 0,14822, suivant qu'elle arrive le matin ou le soir. Cet intervalle très-différent dans des ports même fort voisins, est ce que l'on nomme établissement du port, parce qu'il détermine les heures des marées, relatives aux phases de la lune. La pleine mer qui a lieu à Brest, au moment de la quadrature, suit l'instant de minuit ou celui du midi vrai, de 0,35464.

La marée voisine de la sysigie, avance ou retarde de 263", pour chaque heure dont elle précède ou suit la sysigie : la marée voisine de la quadrature, avance ou retarde de 495", pour chaque heure dont elle précède ou suit la quadrature.

Les heures des marées sysigies ou quadratures, varient avec les distances du soleil et de la lune, à la terre, et principalement avec les distances de la lune. Dans les sysigies, chaque minute d'accroissement on de diminution dans le demi-diamètre apparent de la lune, fait avancer ou retarder l'heure de la pleine mer, de 354". Ce phénomène a également lieu dans les quadratures; mais il y est trois fois moindre.

Les déclinaisons du solcil et de la lune influent pareillement sur les heures des marées sysigies et quadratures. Dans les sysigies des solstices, l'heure de la pleinemer avance d'environ deux minutes : elle retarde de la même quantité, dans les sysigies des équinoxes. Au contraire, dans les quadratures des équinoxes, l'heure de la marée avance d'environ huit minutes, et elle retarde de la même quantité, dans les quadratures des solstices.

On a vu que le retard des marées, d'un jour à l'autre, est de 0,03505, dans son état moyen; ensorte que si la marée arrive à 0,1 après le minuit vrai, elle arrivera le lendemain matin, à 0,13505. Mais ce retard varie avec les phases de la lune. Il est le plus petit qu'il est possible, vers les sysigies, quand les marées totales sont à leur maximum, et alors il n'est que de 0,02705. Lorsque les marées sont à leur minimum ou vers les quadratures; il est le plus grand possible, et s'élève à 0,05207. Ainsi la différence des heures des marées correspondantes aux momens de la sysigie et de la quadrature, et qui, par ce qui précède, est de 0,20642, augmente pour les marées qui suivent de la même manière ces deux phases, et devient à peu près égale à un quart de jour, relativement au maximum et au minimum des marées.

Les variations des distances du soleil et de la lune à la terre, et principalement celles de la lune, influent sur les retards des marées, d'un jour à l'autre. Chaque minute d'accroissement ou de diminution dans le demi-diamètre apparent de la lune, augmente ou diminue ce retard, de 258", vers les sysigies. Ce phénomène a également lieu dans les quadratures; mais il y est trois fois moindre.

Le retard journalier des marées varie encore par la déclinaison des deux astres. Dans les sysigies des solstices, il est d'environ 155" plus grand que dans son état moyen; il est plus petit de la même

quantité dans les équinoxes. Au contraire, dans les quadratures des équinoxes, il surpasse sa grandeur moyenne, de 543": il en est surpassé de la même quantité, dans les quadratures des solstices.

Ainsi, les inégalités des hauteurs et des intervalles des marées ont des périodes très-différentes, les unes d'un demi-jour et d'un jour, d'autres d'un demi-mois, d'un mois, d'une demi-année et d'une année; d'autres enfin sont les mêmes que celles des révolutions des nœuds et du périgée de l'orbe lunaire dont la position influe sur les marées, par l'effet des déclinaisons de la lune et de ses distances à la terre.

La grandeur et généralement tous les phénomènes des marées, m'ont paru les mêmes dans les nouvelles comme dans les pleines lunes.

Ces phénomènes ont également lieu dans tous les ports et sur tous les rivages de la mer; mais les circonstances locales sans rien changer aux lois des marées, ont une grande influence sur leur grandeur et sur l'heure de l'établissement du port.

CHAPITRE XVI.

De l'atmosphère terrestre et des réfractions astronomiques.

Un fluide élastique rare et transparent enveloppe la terre et s'élève à une grande hauteur. Il pèse comme tous les corps, et son poids fait équilibre à celui du mercure dans le baromètre. Sur le parallèle de cinquante degrés, à la température de la glace fondante, et à la moyenne hauteur du baromètre au niveau des mers, hauteur qui peut être supposée de om, 76, le poids de l'air est à celui d'un pareil volume de mercure, dans le rapport de l'unité à 10477,9; d'où il suit qu'en s'élevant alors, de 10m,4779, la hauteur du baromètre s'abaisserait à très-peu près d'un millimètre, et que si la densité de l'atmosphère était partout la même, sa hauteur serait de 7963 metres. Mais l'air est compressible : sa température étant supposée constante, sa densité, suivant une loi générale pour les gaz et les fluides en vapeurs, est proportionnelle au poids qui le comprime, et par conséquent, à la hauteur du baromètre. Ses couches inférieures comprimées par les couches supérieures sont donc plus denses que celles-ci qui deviennent de plus en plus rares, à mesure que l'on s'élève au-dessus de la terre. Leur hauteur eroissant en progression arithmétique, leur densité diminuerait en progression géométrique, si elles avaient toutes la même température. Pour le faire voir, concevons un canal vertical traversant deux couches atmosphériques infiniment voisines. La partie de la couche la plus élevée, que renferme le canal, sera moins comprimée que la partie correspondante de la couche la plus basse, d'une quantité égale au poids de la petite colonne d'air, interceptée entre ces deux parties. La température étant supposée la même, la différence de compression des deux couches est proportionnelle

à la différence de leurs densités; cette dernière différence est donc proportionnelle au poids de la petite colonne, et par conséquent au produit de sa densité par sa longueur, du moins, si l'on fait abstraction de la variation de la pesanteur, à mesure que l'on s'élève. Les deux couches étant supposées infiniment voisines, la densité de la colonne peut être supposée la même que celle de la couche inférieure; la variation différentielle de cette dernière densité, est donc proportionnelle au produit de cette densité, par la variation de la hauteur verticale; par conséquent, si l'on fait varier cette hauteur, de quantités toujours égales, le rapport de la différentielle de la densité, à la densité elle-même, sera constant; ce qui est la propriété caractéristique d'une progression géométrique décroissante, et dont tous les termes sont infiniment rapprochés. De là il suit que les hauteurs des couches, croissant en progression arithmétique, leurs densités diminuent en progression géométrique, et leurs logarithmes soit hyperboliques, soit tabulaires, décroissent en progression arithmétique.

On a tiré un parti avantageux de ces données, pour mesurer les bauteurs au moyen du baromètre. La température de l'atmosphère étant supposée partout la même; on aura par le théorème précédent, la différence en bauteur, de deux stations, en multipliant par un eoefficient constant, la différence des logarithmes des hauteurs observées du baromètre, à chaque atation. Une seule observation suffit pour déterminer ce coefficient. Ainsi l'on a vu qu'à zéro de température, la bauteur du baromètre étant o^m,76000 dans la station inférieure, et o^m,75999 dans la station supérieure, cette station était élevée de o^m,104779 au dessus de la première. Le coefficient constant est donc égal à cette quantité divisée par la différence des logarithmes tabulaires des nombres 0,76000 et 0,75999, ce qui donne 18336^m pour oc coefficient. Mais cette règle pour mesurer les hauteurs par le baromètre, exige diverses modifications que nous allons développer.

La température de l'atmosphère n'est pas uniforme: elle diminue à mesure que l'on s'élève. La loi de cette diminution change à chaque instant; mais par un résultat moyen entre beaucoup d'observations, on peut évaluer à seize ou dix-sept degrés, la dimi-

nution de la température relative à trois mille mêtres de hauteur. Or l'air, comme tous les corps, se dilate par la chaleur, et se resserre par le froid, et l'on a trouvé par des expériences très-précises, que son volume étant représenté par l'unité, à zéro de température, il varie comme celui de tous les gaz et de toutes les vapeurs, de 0,00375 pour chaque degré du thermomètre; il faut donc avoir égard à ces variations dans le calcul des hauteurs ; car il est visible que pour obtenir le même abaissement dans le baromètre, il faut s'élever d'autant plus, que la couche d'air, que l'on traverse, est plus rare. Mais dans l'impossibilité de connaître exactement la variation de sa température; ce que l'on peut faire de plus simple, est de supposer cette température uniforme et moyenne entre les températures des deux stations que l'on considère. Le volume de la colonne d'air comprise entre elles, étant augmenté en raison de cette température moyenne, la hauteur due à l'abaissement observé du baromètre, devrà étre augmentée dans le même rapport; ce qui revient à multiplier le coefficient 18336 , par l'unité plus la fraction 0,003/5 prise autant de fois qu'il y a de degrés dans la température moyenne. Les vapeurs aqueuses répandnes dans l'atmosphère, étant moins denses que l'air, à la même pression et à la même température, elles diminuent la densité de l'atmosphère; et comme, tout étant égal d'ailleurs, elles sont plus abondantes dans les grandes chaleurs; on y aura égard en partie, en augmentant un peu le nombre 0,00375 qui exprime la dilatation de l'air pour chaque degré du thermemêtre. Je trouve que l'on satisfait assez bien à l'ensemble des observations, en le portant à 0,004; on pourra donc faire usage de ce dernier nombre, du moins jusqu'à ce que l'on soit parvenu par une longue suite d'observations sur l'hygromètre, à introduire cet instrument, dans la mesure des hauteurs par le baromètre.

Jusqu'ici, nous avons supposé la pesanteur constante, et l'on a vu précédemment qu'elle diminue un peu, lorsqu'on s'élève; ce qu'i contribute encore à augmenter la hauteur due à l'abaissement du baromètre : ainsi l'on aura égard à cette diminution de la pesanteur, si l'on augmente un peu le facteur constant. En comparant un grand nombre d'observations du baromètre faites au pied et au sommet

de plusieurs montagnes dont la hauteur a été mesurée avec exacititude par les moyens trigonométriques, Ramond a trouvé 18303m pour ce facteur. Mais en ayant égard à la diminution de la pesanteur. les mêmes comparaisons le réduisent à 18336^m. Ce dernier facteur donne 10477,9 pour le rapport de la pesanteur du mercure, à celle d'un pareil volume d'air sur le parallèle de cinquante degrés, à zéro de température, et la hauteur du baromètre étant o^m,76. Biot et Arago ont trouvé 10466,6 pour ce rapport réduit au même parallèle, en pesant avec un grand soin, des mesures connues de mercure et d'air. Mais ils ont employé de l'air très-sec, au lieu que celui de l'atmosphère est toujours mêlé d'une quantité plus ou moins grande de vapeur aqueuse, quantité que l'on détermine au moyen de l'hygromètre : cette vapeur est plus légère que l'air, dans le rapport de dix à dix-sept à fort peu près; les expériences directes ont dû par conséquent, donner une pesanteur un peu plus petite au mercure, que les observations barométriques. Ces expériences réduisent à 18316m.,6 le facteur 18336m. Pour l'élever au nombre 18393m, que donnent les observations du baromètre, quand on n'a point égard à la variation de la pesanteur; il faudrait supposer à l'humidité moyenne de l'atmosphère, une valeur beaucoup trop grande; ainsi la diminution de la pesanteur est sensible même dans les observations barométriques. Le facteur 18393^m corrige à trèspeu près, l'effet de cette diminution; mais une autre variation de la pesanteur, celle qui dépend de la latitude, doit influer encore sur ce facteur. Il a été déterminé pour une latitude que l'on peut supposer de 50°, sans erreur sensible : il doit augmenter à l'équateur où la pesanteur est moindre qu'à cette latitude. Il est visible, en effet, qu'il faut s'y élever dayantage, pour parvenir d'une pression donnée de l'atmosphère, à une pression plus petite d'une quantité déterminée, puisque dans l'intervalle, la pesanteur de l'air est moindre; le coefficient 18393^m doit donc varier comme la longueur du pendule à secondes, qui se raccourcit ou s'alonge suivant que la pesanteur augmente ou diminue. Il est facile de conclure de ce que l'on a dit précédemment sur les variations de cette longueur, qu'il faut ajouter à ce coefficient, le produit de 26m, 164, par le cosinus du double de la latitude.

Enfin, on doit appliquer aux hauteurs du baromètre, une légère correction dépendante de la différence des températures du mercure du baromètre dans les deux stations. Pour bien connaître cette différence, on enchâsse un petit thermomètre à mercure dans la monture du baromètre, de manière que le mercure de ces deux instrumens soit toujours à fort peu près, à la même température. Dans la station la plus froide, le mercure est plus dense, et par cette cause, la colonne du mercure du baromètre est diminuée. Pour la ramener à la longueur qu'elle aurait, si la température était la même qu'à la station la plus chaude, il faut l'augmenter d'autant de fois sa 5412ème partie, qu'il y a de degrés de différence entre les températures du mercure dans les deux stations.

Voici donc la règle qui me paraît à-la-fois, la plus exacte et la plus simple, pour mesurer les hauteurs par le baromètre. On, corrigera d'abord, comme on vient de le dire, la hauteur du baromètre dans la station la plus froide. Ensuite, on ajoutera au facteur 18393^m, le produit de 26^m,164 par le cosinus du double de la latitude. On multipliera ce facteur ainsi corrigé, par le logarithme tabulaire du rapport de la plus grande à la plus petite hauteur corrigée du baromètre. On multipliera enfin, ce produit, par le double de la somme des degrés du thermomètre qui indique la température de l'air à chaque station, et l'on ajoutera ce produit divisé par mille, au précédent; la somme donnera à très-peu près, l'élévation de la station supérieure au-dessus de l'inférieure, surtout si l'on a soin de faire les observations du baromètre, à l'instant du jour, le plus favorable, et qui paraît être celui de midi.

L'air est invisible en petites masses; mais les rayons de lumière, réfléchis par toutes les couches de l'atmosphère, produisent une impression sensible. Ils le font voir avec une couleur bleue qui répand une teinte de même couleur sur tous les objets aperçus dans le lointain, et qui forme l'azur céleste. Cette voûte bleue, à laquelle les astres semblent attachés, est donc fort près de nous : elle n'est que l'atmosphère terrestre, et c'est à d'immenses distances au-delà, que tous ces corps sont placés. Les rayons solaires que ses molécules nous renvoient en abondance, avant le lever et après le coucher du soleil, forment l'aurore et le crépuscule, qui s'étendant à

plus de vingt degrés de distance de cet astre, nous prouvent que les molécules extrêmes de l'atmosphère, sont élevées au moins de soixante mille mètres.

Si l'œil pouvait distinguer et rapporter à leur vraie place, les points de la surface extérieure de l'atmosphère; nous verrions le ciel comme. une calotte sphérique, formée par la portion de cette surface que retrancherait un plan tangent à la terre; et comme la hauteur de l'atmosphère est fort petite relativement au rayon terrestre, le ciel nous paraîtrait sous la forme d'une voûte surbaissée. Mais quoique nous ne puissions pas distinguer les limites de l'atmosphère; cependant les rayons qu'elle nous renvoie, venant d'une plus grande profondeur à l'horizon qu'au zénith, nous devons la juger plus étendue dans le premier sens. A cette eause se joint encore l'interposition des objets à l'horizon, qui contribue à augmenter la distance apparente de la partie du ciel, que nous rapportons au-delà; le ciel doit donc nous paraître surbaissé tel que la calotte d'une sphère. Un astre élevé d'environ vingt-six degrés, semble diviser en deux parties égales, la longueur de la courbe que forme depuis l'horizon jusqu'au zénith, la section de la surface du ciel, par un plan vertical; d'où il suit que si cette courbe est un arc de cercle, le rayon horizontal de la voûte céleste apparente est à son rayon vertical, à peu près comme trois et un quart est à l'unité; mais ce rapport varie avec les causes de cette illusion. Les grandeurs apparentes du soleil et de la lune, étant proportionnelles aux angles sous lesquels on les aperçoit, et à la distance apparente du point du ciel, auquel on les rapporte; ils nous paraissent plus grands à l'horizon qu'au. zénith, quoiqu'ils y soient vus sous un plus petit angle.

Les rayons lumineux ne se meuvent pas en ligne droite dans l'atmosphère: ils s'infléchissent continuellement vers la terre. L'observateur qui n'aperçoit les objets, que dans la direction de la tangente à la courbe qu'ils décrivent, les voit plus élevés qu'ils ne le sont réellement, et les astres paraissent sur l'horizon, alors même qu'ils sont abaissés au-dessous. En infléchissant les rayons du soleil, l'atmosphère nous fait ainsi jouir plus long-temps de sa présence, et augmente la durée du jour, que prolongent encore l'aurore et le crépuscule. Il importait extrêmement aux astronomes de connaître.

les lois et la quantité de la réfraction de la lumière dans notre atmosphère, pour avoir la vraie position des astres. Mais avant de présenter le résultat de leurs recherches sur cet objet, je vais exposer en peu de mots, les principales propriétés de la lumière.

En passant d'un milieu transparent dans un autre, un rayon lumineux s'approche ou s'éloigne de la perpendiculaire à la surface qui les sépare, de manière que les sinus des deux angles que forment ses directions avec cette perpendiculaire, l'une avant, l'autre après son entrée dans le nouveau milieu, sont en raison constante, quels que soient ces angles. Mais la lumière, en se réfractant ainsi, présente un phénomène remarquable qui nous a fait connaître sa nature. Un rayon de lumière solaire reçu dans une chambre obscure, après son passage à travers un prisme, forme une image oblongue. diversement colorée: ce rayon est un faisceau d'un nombre infini de rayons de différentes couleurs, que le prisme sépare en vertu de leur diverse réfrangibilité. Le rayon le plus réfrangible est le violet, ensuite l'indigo, le bleu, le vert, le jaune, l'orangé et le rouge. Mais quoique nous ne désignions ici que sept espèces de rayons; la continuité de l'image prouve qu'il en existe une infinité qui s'en rapprochent par des nuances insensibles de couleurs et de réfrangibilité. Tous ces rayons rassemblés au moyen d'une lentille, font reparaître la couleur blanche du soleil, qui n'est ainsi que le mélange de toutes les couleurs simples ou homogènes, dans des proportions déterminées.

Lorsqu'un rayon d'une couleur bomogène est bien séparé des autres; il ne change ni de réfrangibilité, ni de couleur, quelles que soient les réflexions et les réfractions qu'il subit; sa couleur n'est donc point une modification de la lumière, par les milieux qu'elle traverse, mais elle tient à sa nature. Cependant, la similitude de couleur ne prouve point la similitude de lumière. En mélant ensemble plusieurs rayons différemment colorés de l'image solaire décomposée par le prisme, on peut former une couleur parfaitement semblable à l'une des couleurs simples de cette image; ainsi le mélange du rouge et du jaune homogènes, produit un orangé semblable, en apparence, à l'orangé homogène. Mais la réfraction des rayons du mélange, à travers un nouveau prisme, les sépare et fait reparaître

les couleurs composantes, tandis que les rayons de l'orangé homogène, restent inaltérables.

Les rayons de lumière se réfléchissent à la rencontre d'un miroir, en formant avec la perpendiculaire à sa surface, des angles de réflexion, égaux aux angles d'incidence.

Les réfractions et les réflexions que les rayons du soleil subissent dans les gouttes de pluie, donnent naissance à l'arc-en-ciel dont l'explication fondée sur un calcul rigoureux qui satisfait exactement à tous les détails de ce curieux phénomène, est un des plus beaux résultats de la physique.

La plupart des corps décomposent la lumière qu'ils reçoivent; ils en absorbent une partie, et réfléchissent l'autre sous toutes les directions: ils paraissent rouges, bleus, verts, etc., suivant les couleurs des rayons qu'ils renvoient. Ainsi la lumière blanche du soleil, en se répandant sur toute la nature, se décompose et réfléchit à nos yeux une infinie variété de couleurs.

Après cette courte digression sur la lumière, je reviens aux réfractions astronomiques. Des expériences très-précises ont appris que la réfraction de l'air est indépendante de sa température, et proportionnelle à sa densité. Elles ont fait connaître qu'en passant du vide dans l'air à la température de la glace fondante, et sous une pression mesurée par une hauteur barométrique de soixanteseize centimètres, un rayon lumineux se réfracte de manière que le sinus de réfraction est au sinus d'incidence, comme l'unité est à 1,0002943321. Il suffit donc pour déterminer la route de la lumière à travers l'atmosphère, de connaître la loi de la densité de ses couches; mais cette loi qui dépend de leur chaleur, est très-compliquée, et varie à chaque instant du jour. L'atmosphère étant supposée partout à zéro de température, on a vu que la densité des couches diminue en progression géométrique; et l'on trouve par l'analyse, que la hauteur du baromètre étant de o^m,76, la réfraction est alors de 7391" à l'horizon. Elle ne serait que de 5630". si la densité des couches diminuait en progression arithmétique et devenait nulle à la surface. La réfraction horizontale que l'on observe d'environ 6500", est moyenne entre ces limites. Ainsi la loi de diminution de densité des couches atmosphériques, tient à peu pres

le milieure ces progressions. En adoptant une hypothèse qui particip i es deux, on parvient à représenter à-la-fois toutes les observations du baromètre et du thermomètre à mesure que l'on s'élève da s l'atmosphère, et les réfractions astronomiques; sans recourir, comme quelques physiciens l'ont fait, à un fluide particulier qui s'lé à l'air atmosphérique, réfracte la lumière.

Lorsque : hauteur apparente des astres sur l'horizon, excède onze degrés 4 ur réfraction ne dépend sensiblement que de l'état du baromètre et du thermomètre dans le lieu de l'observateur, et elle est à fort peu près proportionnelle à la tangente de la distance apparente de l'astre au zénith, diminuée de trois fois un quart la réfraction correspondante à cette distance, à la température de la glace fondante, et à la hauteur de om, 76 du baromètre. Il résulte des données précédentes, qu'à cette température, et quand la hauteur du baromètre est de soixante-seize centimètres, le coefficient qui, multiplié par cette tangente, donne la réfraction astronomique, est de 187",24; et, ce qui est fort remarquable, la comparaison d'un grand nombre d'observations astronomiques, conduit à la même valeur que l'on doit ainsi regarder comme très-exacte; mais elle varie comme la densité de l'air. Chaque degré du thermomètre augmente de 0,00375 le volume de ce fluide, pris pour unité à zéro de température; il faut donc diviser le coefficient 187",24, par l'unité plus le produit de 0,00375 par le nombre des degrés du thermomètre. De plus, la densité de l'air est, toutes choses égales d'ailleurs, proportionnelle à la hauteur du baromètre; il faut donc multiplier ce coefficient par le rapport de cette hauteur, à o^m.,76, la colonne de mercure étant réduite à zéro de température. On aura au moyen de ces données, une table de réfractions très-précise, depuis onze degrés de hauteur apparente jusqu'au zénith, intervalle dans lequel se font presque toutes les observations astronomiques. Cette table sera indépendante de toute hypothèse sur la diminution de densité des couches atmosphériques, et elle pourra servir au sommet des plus hautes montagnes, comme au niveau des mers. Mais la pesanteur variant avec la hauteur et la latitude; il est clair qu'à la même température, des hauteurs égales du baromètre, n'indiquant point une égale densité dans l'air, cette densité doit être plus petite dans les lieux où la pesanteur est moindre. Ainsi le coefficient 187",24 déterminé pour le parallèle de 50°, doit à la surface de la terre, varier comme la pesanteur : il faut ainsi en retrancher le produit de 0",53 par le cosinus du double de la latitude.

La table dont on vient de parler, suppose que la constitution de l'atmosphère est partout et dans tous les instans, la même : c'est ce que l'expérience a fait connaître. On sait maintenant que notre air n'est point une substance homogène, et que sur cent parties, il en contient 79 de gaz azote et 21 de gaz oxigène, gaz éminemment respirable, nécessaire à la combustion des corps et à la respiration des animaux, qui n'est qu'une combustion lente, principale source de la chaleur animale: trois ou quatre parties d'acide carbonique, sont répandues dans mille d'air atmosphérique. On a soumis à des analyses très-précises, cet air pris dans toutes les saisons, dans les climats les plus lointains, sur les plus hautes montagnes, et à des hauteurs plus grandes encore : on a trouvé constamment la même proportion des deux gaz azote et oxigène. Une légère enveloppe remplie de gaz hydrogène , le plus rare de tous les fluides élastiques, s'élève avec les corps qui y sont attachés, jusqu'à ce qu'elle rencontre une couche de l'atmosphère assez peu dense pour y demeurer en équilibre. Par ce moyen dont on doit l'heureuse expérience aux savans français, l'homme a étendu son domaine et sa puissance: il peut s'élancer dans les airs, traverser les nuages et interroger la nature dans les hautes régions de l'atmosphère, auparavant inaccessibles. L'ascension la plus utile aux sciences, a été celle de Gay-Lussac qui s'est élevé à sept mille seize mètres au-dessus du niveau des mers, hauteur la plus grande à laquelle on soit encore parvenu, et qui surpasse d'environ cinq cents mètres, la cime du Chimboraço, la plus haute montagne connue. Il a mesuré à cette hauteur, l'intensité de la force magnétique, et l'inclinaison de l'aiguille aimantée, qu'il a trouvées les mêmes qu'à la surface de la terre. Au moment de son départ de Paris, vers dix heures du matin, la hauteur du baromètre était de o^m. 7652, le thermomètre marquait 30°, 7, et l'hygromètre à cheveu, 60°. Cinq heures après, à la plus grande élévation, les mêmes instrumens indiquaient om, 3288; — 9°,5 et 33°. Ayant rempli un ballon, de l'air de ces couches élevées, il en a fait

avec un grand soin, l'analyse; et il n'a point reconnu de différence entre cet air et celui des couches les plus basses de l'atmosphère.

Ce n'est que depuis un demi-siècle environ, que les astronomes ont fait entrer les hauteurs du baromètre et du thermomètre dans les tables de réfraction : l'extrême précision que l'on cherche maintenant à donner aux observations et aux instrumens d'astronomie, faisait desirer de connaître l'influence de l'humidité de l'air sur sa force réfringente, et s'il est nécessaire d'avoir égard aux indications de l'hygromètre. Pour suppléer aux expériences directes qui manquaient sur cet objet, je suis parti de l'hypothèse que les actions de l'eau et de sa vapeur, sur la lumière, sont proportionnelles à leurs densités; hypothèse d'autant plus vraisemblable, que des changemens dans la constitution des corps, beaucoup plus intimes que la réduction des liquides en vapeurs, n'altèrent point d'une manière sensible, le rapport de leur action sur la lumière, à leur densité. Dans cette hypothèse, le pouvoir réfringent de la vapeur aqueuse peut être conclu de la réfraction qu'éprouve un rayon lumineux, en passant de l'air dans l'eau, réfraction que l'on a mesurée avec exactitude. On trouve ainsi que ce pouvoir résringent surpasse celui de l'air réduit à la même densité que la vapeur; mais à pressions égales, la densité de l'air surpasse celle de la vapeur, à peu près dans le même rapport : d'où il résulte que la réfraction due à la vapeur aqueuse répandue dans l'atmosphère, est à peu près la même que celle de l'air dont elle occupe la place, et qu'ainsi l'effet de l'humidité de l'air sur la réfraction, est insensible. Biot a confirmé ce résultat, par des expériences directes qui montrent de plus, que la température n'influe sur la réfraction, que par le changement qu'elle produit dans la densité de l'air.

La théorie précédente suppose une atmosphère parfaitement calme, ensorte que la densité de l'air soit partout la même à des hauteurs égales au-dessus du niveau des mers. Mais les vents et les inégalités de température, altèrent cette hypothèse et peuvent affecter d'une manière sensible, les réfractions. Quelque perfection que l'on donne aux instrumens d'astronomie, l'effet de ces causes perturbatrices, s'il est remarquable, sera toujours un obstacle à la précision extrême des observations qu'il faudra multiplier considérablement

pour le faire disparaître. Heureusement, nous sommes certains que cet effet ne peut s'élever qu'à un très-petit nombre de secondes.

L'atmosphère affaiblit la lumière des astres, surtout à l'horizon où leurs rayons la traversent dans une plus grande étendue. Il suit des expériences de Bouguer, que le baromètre étant à soixante-seize centimètres de hauteur, si l'on prend pour unité, l'intensité de la lumière d'un astre à son entrée dans l'atmosphère; son intensité, lorsqu'elle parvient à l'observateur et quand l'astre est au zénith, est réduite à 0,8123. La hauteur de l'atmosphère serait alors de 7045^m, si sa température était à zéro, et si elle était partout également dense. Or il est naturel de penser que l'extinction d'un rayon de lumière qui la traverse, est la même que dans ces hypothèses, puisqu'il rencontre le même nombre de molécules aériennes; ainsi une couche d'air de la densité précédente, et de 7945^m. d'épaisseur, réduit à 0,8123 la force de la lumière. Il est facile d'en conclure l'extinction de la lumière, dans une couche d'air de même densité, et d'une épaisseur quelconque; car il est visible que si l'intensité de la lumière est réduite au quart, en traversant une épaisseur donnée, une égale épaisseur réduira ce quart au seizième de la valeur primitive; d'où l'on voit que les épaisseurs croissant en progression arithmétique, l'intensité de la lumière diminue en progression géométrique; ses logarithmes suivent donc le rapport des épaisseurs. Ainsi, pour avoir le logarithme tabulaire de l'intensité de la lumière, lorsqu'elle a traversé une épaisseur quelconque, il faut multiplier — 0,0902835, logarithme tabulaire de 0,8123, par le rapport de cette épaisseur à 7945m; et si la densité de l'air est plus grande ou plus petite que la précédente, il faut augmenter ou diminuer ce logarithme, dans le même rapport.

Pour déterminer l'affaiblissement de la lumière des astres, relatifà leur hauteur apparente, on peut imaginer le rayon lumineux mu dans un canal, et réduire l'air renfermé dans ce canal, à la densité précédente. La longueur de la colonne d'air ainsi réduite, déterminera l'extinction de la lumière de l'astre que l'on considère; or on peut supposer depuis douze degrés de hauteur apparente jusqu'au zénith, la route de la lumière des astres, sensiblement rectiligne, et l'on peut, dans cet intervalle, considérer les couches de l'atmosphère, comme étant planes et

parallèles; alors l'épaisseur de chaque couche dans la direction du rayon lumineux, est à son épaisseur dans le sens vertical, comme la sécante de la distance apparente de l'astre au zénith, est au rayon. En multipliant donc cette sécante par — 0,0902835, et par le rapport de la hauteur du baromètre, à o^m,76; en divisant ensuite le produit, par l'unité plus 0,00375 multiplié par le nombre des degrés du thermomètre; on aura le logarithme de l'intensité de la lumière de l'astre. Cette règle fort simple donnera l'extinction de la lumière des astres au sommet des montagnes et au niveau des mers; ce qui peut être utile, soit pour corriger les observations des éclipses des satellites de Jupiter, soit pour évaluer l'intensité de la lumière solaire, au foyer des verres ardens. Nous devons cependant observer que les vapeurs répandues dans l'air, influent considérablement sur l'extinction de la lumière : la sérénité du ciel et la rareté de l'air rendent la lumière des astres plus vive sur les montagnes élevées; et si l'on transportait nos grands télescopes sur le sommet des Cordilières, il n'est pas douteux que l'on découvrirait plusieurs phénomènes célestes, qu'une atmosphère plus épaisse et moins transparente, rend invisibles dans nos climats.

L'intensité de la lumière des astres, à de très-petites hauteurs, dépend, ainsi que leur réfraction, de la densité des couches élevées de l'atmosphère. Si sa température était partout la même, les logarithmes de l'intensité de la lumière seraient proportionnels aux réfractions astronomiques, divisées par les cosinus des hauteurs apparentes; et alors cette intensité à l'horizon, serait réduite environ à la quatre-millième partie de sa valeur primitive : c'est pour cela que le soleil dont on peut difficilement soutenir l'éclat à midi, se voit sans peine à l'horizon.

On peut au moyen de ces données, déterminer l'influence de notre atmosphère dans les éclipses. En réfractant les rayons solaires qui la traversent, elle les infléchit dans le cône d'ombre terrestre; et comme la réfraction horizontale surpasse la demi-somme des parallaxes du soleil et de la lune, le centre du disque lunaire, supposé sur l'axe de ce cône, reçoit des deux côtés de la terre, les rayons d'un même point de la surface du soleil; ce centre serait donc plus éclairé que dans la pleine lune, si l'atmosphère n'éteignait pas en grande partie, la lumière qu'elle lui fait parvenir. Il résulte de l'analyse ap-

pliquée aux données précédentes, qu'en prenant pour unité, la lumière de ce point dans la pleine lune; sa lumière est 0,02, dans les éclipses centrales apogées, et seulement 0,0036 ou six fois moindre environ, dans les éclipses centrales périgées. S'il arrive donc alors, par un concours extraordinaire de circonstances, que les vapeurs absorbent une partie considérable de cette faible lumière, quand elle traverse l'atmosphère pour arriver du soleil à la lune; ce dernier astre sera entièrement invisible. L'histoire de l'Astronomie nous offre quelques exemples, quoique très-rares, de cette disparition totale de la lune dans ses éclipses. La couleur rouge du soleil et de la lune à l'horizon, nous prouve que l'atmosphère terrestre laisse un plus libre passage aux rayons de cette couleur qui, par cette raison, est celle de la lune éclipsée.

Dans les éclipses de soleil, la lumière réfléchie par l'atmosphère terrestre, diminue l'obscurité qu'elles produisent. Plaçons-nous en effet, sous l'équateur, et supposons les centres du soleil et de la lune à notre zénith. Si la lune étant périgée, le soleil est apogée; on aura à très-peu près le cas de l'obscurité la plus profonde, et sa durée sera d'environ cinq minutes et demie. Le diamètre de l'ombre projetée sur la terre , sera vingt-deux millièmes de celui de la terre , et six fois et demie, moindre que le diamètre de la section de l'atmosphère par le plan de l'horizon, du moins, si l'on suppose la hauteur de l'atmosphère, égale à un centième du rayon terrestre, comme on l'a conclu de la durée du crépuscule; et il est très-vraisemblable que l'atmosphère nous renvoie encore des rayons sensibles, à de plus grandes hauteurs. On voit donc que le soleil éclaire dans ses éclipses, la plus grande partie de l'atmosphère, qui est au-dessus de l'horizon. Mais elle n'est éclairée que par une portion du disque solaire, croissante à mesure que les molécules atmosphériques s'éloignent du zénith : dans ce cas, les rayons solaires traversant une plus grande étendue de l'atmosphère, pour arriver du soleil à ces molécules, et de là revenir par la réflexion, à l'observateur; ils sont assez affaiblis pour laisser apercevoir les étoiles de première et de seconde grandeur. Leur teinte participant du bleu du ciel et de la rougeur du crépuscule, répand sur tous les objets, une couleur sombre qui jointe à la disparition subite du soleil, remplit les animaux de frayeur.

LIVRE SECOND.

DES MOUVEMENS RÉELS DES CORPS CÉLESTES.

Provehimur portu , terræque urbesque recedunt. Vinc. Raéid., liv. mr.

Nous venons d'exposer les principales apparences des corps célestes; et leur comparaison nous a conduits à mettre les planètes en mouvement autour du soleil qui, dans sa révolution autour de la terre, emporte avec lui les foyers de leurs orbites. Mais les apparences seraient les mêmes, si la terre était transportée comme toutes les planètes, autour du soleil : alors cet astre serait, au lieu de la terre, le centre de tous les mouvemens planétaires. La connaissance de ce centre est indispensable pour avancer dans la recherche des causes motrices : elle est d'ailleurs pour nous, du plus grand intérêt, par le rang qu'elle assigne au globe que nous habitons. S'il est, en effet, immobile au milieu de l'univers ; l'homme est en droit de se regarder comme le principal objet des soins de la nature : toutes les opinions fondées sur cette prérogative, méritent son examen; et il peut raisonnablement chercher à découvrir les rapports que les mouvemens des astres doivent avoir alors avec son existence. Mais si la terre est une des planètes qui circulent autour du soleil; cette terre déjà si petite dans le système solaire, disparait entièrement dans l'immensité des cieux dont ce système, tout vaste qu'il est, ne forme qu'un point insensible.

CHAPITRE PREMIER.

Du mouvement de rotation de la Terre.

L'n réfléchissant sur le mouvement diurne auquel tous les corps célestes sont assujétis; on reconnaît évidemment l'existence d'une cause générale qui les entraîne ou paraît les entraîner autour de l'axe du monde. Si l'on considère que ces corps sont isolés entre eux, et placés loin de la terre, à des distances très-différentes; que le soleil et les étoiles en sont beaucoup plus éloignés que la lune, et que les variations des diamètres apparens des planètes, indiquent de grands changemens dans leurs distances; enfin, que les cométes traversent librement le ciel dans tous les sens; il sera très-difficile de concevoir qu'une même cause imprime à tous ces corps, un mouvement commun de rotation. Mais les astres se présentant à nous de la même manière, soit que le ciel les entraîne autour de la terre supposée immobile, soit que la terre tourne en sens contraire, sur elle-même; il paraît beaucoup plus naturel d'admettre ce dernier mouvement, et de regarder celui du ciel comme une apparence.

La terre est un globe dont le rayon n'est que de sept millions de mètres: le soleil est, comme on l'a vu, incomparablement plus gros. Si son centre coïncidait avec celui de la terre, son volume embrasserait l'orbe de la lune, et s'étendrait une fois plus loin; d'où l'on peut juger de son immense grandeur: il est d'ailleurs, éloigné de nous d'environ vingt-trois mille rayons terrestres. N'est-il pas infiniment plus simple de supposer au globe que nous habitons, un mouvement de rotation sur lui-même, que d'imaginer dans une masse aussi considérable et aussi distante que le soleil, le mouvement extrêmement rapide qui lui serait nécessaire pour tourner en un jour, autour de la terre? Quelle force immense ne faudrait-il pas

alors pour le contenir et balancer sa force centrifuge? Chaque astre présente des difficultés semblables, qui sont toutes levées par la rotation de la terre.

On a vu précédemment, que le pôle de l'équateur paraît se mouvoir lentement autour de celui de l'écliptique, et que de là résulte la précession des équinoxes. Si la terre est immobile, le pôle de l'équateur est sans mouvement, puisqu'il répond toujours au même point de la surface terrestre: la sphère céleste se meut donc alors sur les pôles de l'écliptique, et dans ce mouvement, elle entraîne tous les astres. Ainsi le système entier de tant de corps si différens par leurs grandeurs, leurs mouvemens et leurs distances, serait encore assujéti à un mouvement général qui disparaît et se réduit à une simple apparence, si l'on suppose l'axe terrestre se mouvoir autour des pôles de l'écliptique.

Entraînés par un mouvement commun à tout ce qui nous environne, nous ressemblons au navigateur que les vents emportent avec son vaisseau sur les mers. Il se croit immobile; et le rivage, les montagnes et tous les objets placés hors du vaisseau, lui paraissent se mouvoir. Mais en comparant l'étendue du rivage et des plaines, et la hauteur des montagnes, à la petitesse de son vaisseau; il reconnaît que leur mouvement n'est qu'une apparence produite par son mouvement réel. Les astres nombreux répandus dans l'espace céleste, sont à notre égard, ce que le rivage et les montagnes sont par rapport au navigateur; et les mêmes raisons par lesquelles il s'assure de la réalité de son mouvement, nous prouvent celui de la terre.

L'analogie vient à l'appui de ces preuves. On a observé des mouvemens de rotation dans presque toutes les planètes, et ces mouvemens sont dirigés d'occident en orient, comme celui que la révolution diurne des astres semble indiquer dans la terre. Jupiter beaucoup plus gros qu'elle, se meut sur son axe, en moins d'un demi-jour: un observateur à sa surface, verrait le ciel tourner autour de lui, dans cet intervalle; ce mouvement du ciel ne serait cependant qu'une apparence. N'est-il pas naturel de penser qu'il en est de même de celui que nous observons sur la terre? Ce qui confirme d'une manière frappante, cette analogie; c'est que la terre, ainsi que

Jupiter, est aplatie à ses pôles. On conçoit, en effet, que la force centrifuge qui tend à écarter toutes les parties d'un corps, de son axe de rotation, a dû abaisser la terre aux pôles, et l'élever à l'équateur. Cette force doit encore diminuer la pesanteur à l'équateur terrestre, et cette diminution est constatée par les observations du pendule. Tout nous porte donc à penser que la terre a un mouvement de rotation sur elle-même, et que la révolution diurne du ciel, n'est qu'une illusion produite par ce mouvement, illusion semblable à celle qui nous représente le ciel, comme une voûte bleue à laquelle tous les astres sont attachés, et la surface de la terre, comme un plan sur lequel il s'appuie. Ainsi, l'astronomie s'est élevée à travers les illusions des sens; et ce n'a été qu'après les avoir dissipées par un grand nombre d'observations et de calculs, que l'homme enfin a reconnu les mouvemens du globe qu'il habite, et sa vraie position dans l'univers.

CHAPITRE II.

Du mouvement de la Terre, autour du Soleil.

MAINTENANT, puisque la révolution diurne du ciel n'est qu'une illusion produite par la rotation de la terre; il est naturel de penser que la révolution annuelle du soleil emportant avec lui toutes les planètes, n'est pareillement qu'une illusion due au mouvement de translation de la terre autour du soleil. Les considérations suivantes ne laissent aucun doute à cet égard.

Les masses du soleil et de plusieurs planètes, sont considérablement plus grandes que celle de la terre; il est donc beaucoup plus simple de faire mouvoir celle-ci autour du soleil, que de mettre en mouvement autour d'elle, tout le système solaire. Quelle complication dans les mouvemens célestes, entraîne l'immobilité de la terre! Quel mouvement rapide il faut supposer alors à Jupiter, à Saturne près de dix fois plus éloigné que le soleil, à la planète Uranus plus distante encore, pour les faire mouvoir, chaque année, autour de nous, tandis qu'ils se meuvent autour du soleil! Cette complication et cette rapidité de mouvemens disparaissent par le mouvement de translation de la terre, mouvement conforme à la loi générale suivant laquelle les petits corps célestes circulent autour des grands corps dont ils sont voisins.

L'analogie de la terre avec les planètes, confirme ce mouvement. Ainsi que Jupiter, elle tourne sur elle-même, et elle est accompagnée d'un satellite. Un observateur à la surface de Jupiter, jugerait le système solaire en mouvement autour de lui, et la grosseur de la planète rendrait cette illusion moins invraisemblable que pour la terre. N'est-il pas naturel de penser que le mouvement

de ce système autour de nous, n'est semblablement qu'une

apparence.

Transportons-nous par la pensée, à la surface du soleil, et de là contemplons la terre et les planètes. Tous ces corps nous paraîtront se mouvoir d'occident en orient, et déjà cette identité de direction est un indice du mouvement de la terre; mais ce qui le démontre avec évidence, c'est la loi qui existe entre les temps des révolutions des planètes, et leurs distances au soleil. Elles circulent autour de lui avec d'autant plus de lenteur, qu'elles en sont plus éloignées; de manière que les carrés des temps de leurs révolutions sont comme les cubes de leurs moyennes distances à cet astre. Suivant cette loi remarquable, la durée de la révolution de la terre supposée en mouvement autour du soleil, doit être exactement celle de l'année sidérale. N'est-ce pas une preuve incontestable que la terre se meut comme toutes les planètes, et qu'elle est assujétie aux mêmes lois? D'ailleurs, ne serait-il pas bizarre de supposer le globe terrestre, à peine sensible vu du soleil, immobile au milieu. des planètes en mouvement autour de cet astre qui lui-même serait emporté avec elles autour de la terre? La force qui, pour retenir les. planètes dans leurs orbes respectifs autour du soleil, balance leur force centrifuge, ne doit-elle pas agir également sur la terre, et ne faut-il pas que la terre oppose à cette action, la même force centrifuge? Ainsi la considération des mouvemens planétaires observés. du soleil, ne laisse aucun doute sur le mouvement réel de la terre. Mais l'observateur placé sur elle, a de plus, une preuve sensible de ce mouvement, dans le phénomène de l'aberration qui en est une suite nécessaire : c'est ce que nous allons développer.

Sur la fin du dernier siècle, Roëmer observa que les éclipses des satellites de Jupiter avancent vers les oppositions de cette planète, et retardent vers ses conjonctions; ce qui lui fit soupçonner que la lumière ne se transmet pas dans le même instant, de ces astres à la terre, et qu'elle emploie un intervalle de temps, sensible, à parcourir le diamètre de l'orbe du soleil. En effet, Jupiter dans ses oppositions, étant plus près de nous, que dans ses conjonctions, d'une quantité égale à ce diamètre; les éclipses doivent arriver pour nous plutôt dans le premier cas que dans le second, de tout le temps que la

lumière met à traverser l'orbe solaire. La loi des retards observés de ces éclipses, répond si exactement à cette hypothèse, qu'il n'est pas possible de s'y refuser. Il en résulte que la lumière emploie 571" à venir du soleil à la terre.

·Présentement, un observateur immobile verrait les astres suivant la direction de leurs rayons; mais il n'en est pas ainsi, dans la supposition où il se meut avec la terre. Pour ramener ce cas à celui de l'observateur en repos; il suffit de transporter en sens contraire. aux astres, à leur lumière, et à l'observateur lui-même, le mouvement dont il est animé, ce qui ne change point la position apparente des astres; car c'est une loi générale d'optique, que si l'on imprime un mouvement commun à tous les corps d'un système, il n'en résulte aucun changement dans leur situation apparente. Concevons donc qu'au moment où un rayon lumineux va pénétrer dans l'atmosphère terrestre, on lui donne ainsi qu'à l'air et à la terre, un mouvement égal et contraire à celui de l'observateur; et voyons quels phénomènes ce mouvement doit produire dans la position apparente de l'astre dont le rayon émane. On peut faire abstraction du mouvement de rotation de la terre, environ soixante fois moindre à l'équateur même, que celui de la terre autour du soleil: on peut encore supposer ici sans erreur sensible, tous les rayons lumineux que chaque point du disque d'un astre nous envoie, parallèles entre eux et au rayon qui parviendrait du centre de l'astre, à celui de la terre si elle était transparente. Ainsi les phénomènes que les astres présenteraient à un observateur placé à ce dernier centre, et qui dépendent du mouvement de la lumière, combiné avec celui de la terre, sont à très-peu près les mêmes pour tous les observateurs répandus sur sa surface. Enfin, nous ferons abstraction de la petite excentricité de l'orbe\terrestre. Cela posé.

Dans l'intervalle de 571", que la lumière emploie à parcourir le rayon de l'orbe terrestre, la terre décrit un petit arc de cet orbe, égal à 62",5; or il suit des lois de la composition des mouvemens, que si par le centre d'une étoile, on imagine une petite circonférence parallèle à l'écliptique, et dont le diamètre soutende dans le ciel, un arc de 125"; la direction du mouvement de la lumière, lorsqu'on le compose avec le mouvement de la terre, appliqué en sens contraire,

rencontre cette circonférence, au point où elle est coupée par un plan mené par les centres de l'étoile et de la terre, tangentiellement à l'orbe terrestre; l'étoile doit donc paraître se mouvoir sur cette circonférence, et la décrire, chaque année, de manière qu'elle y soit constamment moins avancée de cent degrés, que le soleil dans son orbite apparente.

Ce phénomène est exactement celui que nous avons expliqué dans l'onzième chapitre du premier livre, d'après les observations de Bradley à qui l'on doit sa découverte et celle de sa cause. Pour rapporter les étoiles à leur vraie position, il suffit de les placer au centre de la petite circonférence qu'elles nous semblent décrire; leur mouvement annuel n'est donc qu'une illusion produite par la combinaison du mouvement de la lumière avec celui de la terre. Ses rapports avec la position du soleil, pouvaient faire soupçonner qu'il n'est qu'apparent; mais l'explication précédente le prouve aves évidence. Elle fournit en même temps, une démonstration sensible du mouvement de la terre autour du soleil; de même que l'accroissement des degrés et de la pesanteur, en allant de l'équateur aux pôles, rend sensible son mouvement de rotation.

L'aberration de la lumière affecte les positions du soleil, des planètes, des satellites et des comètes; mais d'une manière différente, à raison de leurs mouvemens particuliers. Pour les en dépouiller, et pour avoir la vraie position des astres; imprimons à chaque instant à tous les corps, un mouvement égal et contraire à celui de la terre qui par là devient immobile; ce qui, comme nous l'avons dit, ne change ni leurs positions respectives, ni leurs apparences. Alors il est visible qu'un astre, au moment où nous l'observons, n'est plus sur la direction du rayon lumineux qui vient frapper notre vue; il s'en est éloigné en vertu de son mouvement réel combiné avec celui de la terre, qu'on lui suppose transporté en sens contraire. La combinaison de ces deux mouvemens, observée de la terre, forme le mouvement apparent que l'on nomme mouvement géocentrique. On aura donc la véritable position de l'astre, en ajoutant à sa longitude et à sa latitude géocentriques observées, son mouvement géocentrique en longitude et en latitude, dans l'intervalle de temps, que la lumière emploie à parvenir de l'astre à la terre. Ainsi, le centre du soleil nous paraît constamment moins avancé de 62",5 dans son orbe, que si la lumière nous parvenait dans un instant.

L'aberration change les rapports apparens des phénomènes célestes soit avec l'espace, soit avec la durée. Au moment où nous les voyons encore, ils ne sont déjà plus: il y a vingt-cinquou trente minutes, que les satellites de Jupiter ont cessé d'être éclipsés, quand nous apercevons la fin de leura éclipses; et les variations des étoiles changeantes précèdent de plusieurs années, les instans de leurs observations. Mais toutes ces causes d'illusion étant bien connues, nous pouvons toujours rapporter les phénomènes du système solaire, à leur vrai lieu et à leur véritable époque.

La considération des mouvemens célestes nous conduit donc à déplacer la terre, du centre du monde, où nous la supposions, trompés par les apparences et par le penchant qui porte l'homme à se regarder comme le principal objet de la nature. Le globe qu'il habite, est une planète en mouvement sur elle-même et autour du soleil. En l'envisageant sous cet aspect, tous les phénomènes s'expliquent de la manière la plus simple; les lois des mouvemens célestes sont uniformes ; toutes les analogies sont observées. Ainsi que Jupiter, Saturne et Uranus, la terre est accompagnée d'un satellite : elle tourne sur elle-même, comme Vénus, Mars, Jupiter, Saturne et probablement toutes les autres planètes : elle emprunte comme elle, sa lumière du soleil, et se meut autour de lui, dans le même sens et suivant les mêmes lois. Enfin, la pensée du mouvement de la terre, réunit en sa faveur, la simplicité, l'analogie, et généralement tout ce qui caractérise le vrai système de la nature. Nous verrons en la suivant dans ses conséquences, les phénomènes célestes ramenés jusque dans leurs plus petits détails, à une seule loi dont ils sont les développemens nécessaires. Le mouvement de la terre acquerra ainsi toute la certitude dont les vérités physiques sont susceptibles, et qui peut résulter, soit du grand nombre et de la variété des phénomènes expliqués, soit de la simplicité des lois dont on les fait dépendre. Aucune branche des sciences naturelles, ne réunit à un plus haut degré ces avantages, que la théorie du système du monde, fondée sur le mouvement de la terre.

Ce mouvement agrandit l'univers à nos yeux: il nous donne pour mesurer les distances des corps célestes, une base immense, le diamètre de l'orbe terrestre. C'est par son moyen, que l'on a exactement déterminé les dimensions des orbes planétaires. Ainsi le mouvement de la terre, qui par les illusions dont il est la cause. a pendant long-temps, retardé la connaissance des mouvemens réels des planètes, nous les a fait connaître ensuite avec plus de précision; que si nous eussions été placés au foyer de ces mouvemens. Cependant, la parallaxe annuelle des étoiles, ou l'angle sous lequel on verrait de leur centre, le diamètre de l'orbe terrestre, est insensible et ne s'élève pas à six secondes, même relativement aux étoiles qui par leur vif éclat, semblent être le plus près de la terre; elles en sont donc au moins deux cent mille fois plus éloignées que le soleil. Une aussi prodigieuse distance jointe à leur vive clarté, nous prouve évidemment qu'elles n'empruntent point, comme les planètes et les satellites, leur lumière, du soleil; mais qu'elles brillent de leur propre lumière; ensorte qu'elles sont autant de soleils répandus dans l'immensité de l'espace, et qui semblables au nôtre, peuvent être les foyers d'autant de systèmes planétaires. Il suffit en effet, de nous placer sur le plus voisin de ces astres, pour ne voir le soleil, que comme un astre lumineux dont le diamètre apparent serait audessous d'un trentième de seconde.

Il résulte de l'immense distance des étoiles, que leurs mouvemens en ascension droite et en déclinaison, ne sont que des apparences produites par le mouvement de l'axe de rotation de la terre. Mais quelques étoiles paraissent avoir des mouvemens propres, et il est vraisemblable qu'elles sont toutes en mouvement, ainsi que le soleil qui transporte avec lui dans l'espace, le système entier des planètes, et des comètes, de même que chaque planète entraîne ses satellites, dans son mouvement autour du soleil,

CHAPITRE III.

Des apparences dues au mouvement de la Terre.

Du point de vue où la comparaison des phénomènes célestes vient de nous placer, considérons les astres, et montrons la parfaite identité de leurs apparences, avec celles que l'on observe. Soit que le ciel tourne autour de l'axe du monde, soit que la terre tourne sur elle-même, en sens contraire du mouvement apparent du ciel immobile; il est clair que tous les astres se présenteront à nous de la même manière. Il n'y a de différence, qu'en ce que dans le premier cas, ils viendraient se placer successivement au-dessus des divers méridiens terrestres qui, dans le second cas, vont se placer au-dessous d'eux.

Le mouvement de la terre étant commun à tous les corps situés à sa surface, et aux fluides qui les recouvrent; leurs mouvemens relatifs sont les mêmes que si la terre était immobile. Ainsi, dans un vaisseau transporté d'un mouvement uniforme, tout se meut comme s'il était en repos : un projectile lancé verticalement de bas en haut, retombe au point d'où il était parti : il paraît sur le vaisseau, décrire une verticale; mais vu du rivage, il se meut obliquement à l'horizon et décrit une courbe parabolique. Cependant, la vîtesse réelle due à la rotation de la terre, étant un peu moindre au pied, qu'au sommet d'une tour élevée; si de ce sommet, on abandonne un corps à sa pesanteur, on conçoit qu'en vertu de l'excès de sa vîtesse réelle de rotation sur celle du pied de la tour, il ne doit pas tomber exactement au point où le fil à plomb qui part du sommet de la tour, va rencontrer la surface de la terre, mais un peu à l'est de ce point. L'analyse fait voir qu'en effet, son écart de ce point, n'a lieu que

vers l'est, qu'il est proportionnel à la racine carrée du cube de la hauteur de la tour, et au cosinus de la latitude, et qu'à l'équateur, il est de 21^{mi},952 pour cent mètres de hauteur. On peut donc par des expériences très-précises sur la chûte des corps, rendre sensible, le mouvement de rotation de la terre. Celles que l'on a déjà faites dans cette vue, en Allemagne et en Italie, s'accordent assez bien avec les résultats précédens; mais ces expériences qui exigent des attentions très-délicates, ont besoin d'être répétées avec plus d'exactitude encore. La rotation de la terre se manifeste à sa surface, principalement par les effets de la force centrifuge qui aplatit le sphéroïde terrestre aux pôles, et diminue la pesanteur à l'équateur, deux phénomènes que les mesures du pendule et des degrés des méridiens, nous ont fait connaître.

Dans la révolution de la terre autour du soleil, son centre et tous les points de son axe de rotation étant mus avec des vîtesses égales et parallèles, cet axe reste toujours parallèle à lui-même; en imprimant à chaque instant, aux corps célestes, et à toutes les parties de la terre, un mouvement égal et contraire à celui de son centre, ce point restera immobile, ainsi que l'axe de rotation; mais ce mouvement imprimé ne change point les apparences de celui du soleil; il ne fait que transporter à cet astre, en sens contraire, le mouvement réel de la terre; les apparences sont par conséquent les mêmes dans l'hypothèse de la terre en repos, et dans celle de son mouvement autour du soleil. Pour suivre plus particulièrement l'identité de ces apparences; imaginons un rayon mené du centre du soleil à celui de la terre : ce rayon est perpendiculaire au plan qui sépare l'hémisphère éclairé de la terre, de son hémisphère obscur : le point dans lequel il traverse la terre, a le soleil verticalement au-dessus de lui, et tous les points du parallèle terrestre que ce rayon rencontre successivement en vertu du mouvement diurne, ont à midi, cet astre au zénith. Or, soit que le soleil se meuve autour de la terre, soit que la terre se meuve autour du soleil et sur elle-même, son axe de rotation conservant toujours une situation parallèle; il est visible que ce rayon trace la même courbe sur la surface de la terre : il coupe dans les deux cas, les mêmes parallèles terrestres, lorsque le soleil a la même

longitude apparente; cet astre s'élève donc également à midi sur l'horizon, et les jours sont d'une égale durée. Ainsi, les saisons et les jours sont les mêmes dans l'hypothèse du repos du soleil, et dans celle de son mouvement autour de la terre; et l'explication des saisons que nous avons donnée dans le livre précédent, s'applique également à la première hypothèse.

Les planètes se meuvent toutes dans le même sens autour du soleil, mais avec des vîtesses différentes : les durées de leurs révolutions croissent dans un plus grand rapport, que leurs distances à cet astre : Jupiter, par exemple, emploie douze années, à peu près, à parcourir son orbe dont le rayon n'est qu'environ cinq fois plus grand que celui de l'orbe terrestre; sa vîtesse réelle est donc moindre que celle de la terre. Cette diminution de vîtesse dans les planètes, à mesure qu'elles sont plus distantes du soleil, a généralement lieu depuis Mercure, la plus voisine de cet astre, jusqu'à Uranus, la plus éloignée; et il résulte des lois que nous établirons bientôt, que les vîtesses moyennes des planètes, sont réciproques aux racines carrées de leur moyenne distance au soleil.

Considérons une planète dont l'orbe est embrassé par celui de la terre, et suivons-la depuis sa conjonction supérieure jusqu'à sa conjonction inférieure. Son mouvement apparent ou géocentrique est le résultat de son mouvement réel combiné avec celui de la terre, transporté en sens contraire. Dans la conjonction supérieure, le mouvement réel de la planète est contraire à celui de la terre; son mouvement géocentrique est donc alors la somme de ces deux mouvemens, et il a la même direction que le mouvement géocentrique du soleil, qui résulte du mouvement de la terre, transporté en sens contraire à cet astre; ainsi le mouvement apparent de la planète est direct. Dans la conjonction inférieure, le mouvement de la planète a la même direction que celui de la terre, et comme il est plus grand, le mouvement géocentrique conserve la même direction qui, par conséquent est contraire au mouvement apparent du soleil; la planète est donc alors rétrograde. On conçoit facilement que dans le passage du mouvement direct au mouvement rétrograde, elle doit paraître sans mouvement ou stationnaire, et que cela doit avoir lieu entre la plus grande élongation et la conjonction inférieure, quand le mouvement géocentrique de la planète, résultant de son mouvement réel et de celui de la terre, appliqué en sens contraire, est dirigé suivant le rayon visuel de la planète. Ces phénomènes sont entièrement conformes aux mouvemens observés de Mercure et de Vénus.

Le mouvement des planètes dont les orbes embrassent l'orbe terrestre, a la même direction dans leurs oppositions, que le mouvement de la terre; mais il est plus petit, et en se composant avec ce dernier mouvement transporté en sens contraire, il prend une direction opposée à sa direction primitive; le mouvement géocentrique de ces planètes est donc alors rétrograde : il est direct dans leurs conjonctions, ainsi que les mouvemens de Mercure et de Vénus dans leurs conjonctions supérieures.

En transportant en sens contraire, aux étoiles, le mouvement de la terre; elles doivent paraître décrire, chaque année, une circonférence égale et parallèle à l'orbe terrestre, et dont le diamètre soutend dans le ciel, un angle égal à celui sous lequel on verrait de leur centre, le diamètre de cet orbe. Ce mouvement apparent a beaucoup de rapport avec celui qui résulte de la combinaison des mouvemens de la terre et de la lumière, et par lequel les étoiles nous semblent décrire annuellement une circonférence parallèle à l'écliptique, dont le diamètre soutend un arc de 125"; mais il en diffère en ce que les astres ont la même position que le soleil, sur la première circonférence, au lieu que sur la seconde, ils sont moins avancés que lui, de cent degrés. C'est par là que l'on peut distinguer ces deux mouvemens, et que l'on s'est assuré que le premier est au moins extrêmement petit; l'immense distance ou nous sommes des étoiles, rendant presque insensible, l'angle que soutend le diamètre de l'orbe terrestre, vu de cette distance.

L'axe du monde n'étant que le prolongement de l'axe de rotation de la terre, on doit rapporter à ce dernier axe, le mouvement des pôles de l'équateur céleste, indiqué par les phénomènes de la précession et de la nutation, exposés dans le chapitre XIII du premier livre. Ainsi, en même temps que la terre se meut sur ellemême et autour du soleil, son axe de rotation se meut très-lentement

autour des pôles de l'écliptique, en faisant de très-petites oscillations dont la période est la même que celle du mouvement des nœuds de l'orbe lunaire. Au reste, ce mouvement n'est point particulier à la terre; car on a vu dans le chapitre IV du premier livre, que l'axe de la lune se meut dans la même période, autour des pôles de l'écliptique.

CHAPITRE IV.

Des lois du mouvement des planètes autour du soleil, et de la figure de leurs orbites.

Rien ne serait plus facile que de calculer d'après les données précédentes, la position des planètes pour un instant quelconque, si leurs mouvemens autour du soleil étaient circulaires et uniformes; mais ils sont assujétis à des inégalités très-sensibles dont les lois sont un des plus importans objets de l'astronomie, et le seul fil qui puisse nous conduire au principe général des mouvemens célestes. Pour reconnaître ces lois, dans les apparences que nous offrent les planètes; il faut dépouiller leurs mouvemens, des effets du mouvement de la terre, et rapporter au soleil, leur position observée des divers points de l'orbe terrestre; il est donc nécessaire avant tout, de déterminer les dimensions de cet orbe, et la loi du mouvement de la terre.

On a vu dans le chapitre II du premier livre, que l'orbe apparent du soleil est une ellipse dont le centre de la terre occupe un des foyers; mais le soleil étant réellement immobile, il faut le mettre au foyer de l'ellipse, et placer la terre sur sa circonférence : le mouvement du soleil sera le même, et pour avoir la position de la terre, vue du centre du soleil, il suffira d'augmenter de deux angles droits, la position de cet astre.

On a vu encore que le soleil paraît se mouvoir dans son orbe, de manière que le rayon vecteur qui joint son centre à celui de la terre, trace autour d'elle, des aires proportionnelles aux temps; mais dans la réalité, ces aires sont tracées autour du soleil. En général, tout ce que nous avons dit dans le chapitre cité, sur l'excentricité de l'orbe solaire et ses variations, sur la position et

le mouvement de son périgée, doit s'appliquer à l'orbe terrestre, en observant seulement que le périgée de la terre, est à deux angles droits de distance, de celui du soleil.

La figure de l'orbe terrestre étant ainsi connue; voyons comme on a pu déterminer celles de tous les orbes planétaires. Prenons pour exemple, la planète Mars qui par la grande excentricité de son orbe, et par sa proximité de la terre, est très-propre à nous faire découvrir les lois du mouvement des planètes.

L'orbe de Mars et son mouvement autour du soleil, seraient connus; si l'on avait pour un instant quelconque, l'angle que fait son rayon vecteur, avec une droite invariable passant par le centre du soleil, et la longueur de ce rayon. Pour simplifier ce problème, on choisit les positions de Mars, dans lesquelles l'une de ces quantités se montre séparément; et c'est ce qui a lieu à fort peu près dans les oppositions, où l'on voit cette planète répondre au même point de l'écliptique, auquel on la rapporterait du centre du soleil. La différence des mouvemens de Mars et de la terre, fait correspondre la planète à divers points du ciel, dans ses oppositions successives; en comparant donc entre elles un grand nombre d'oppositions observées, on pourra découvrir la loi qui existe entre le temps et le mouvement angulaire de Mars autour du soleil, mouvement que l'on nomme *héliocentrique*. L'analyse offre pour cet objet, diverses méthodes qui se simplifient dans le cas présent, par la considération que les principales inégalités de Mars, redevenant les mêmes à chacune de ses révolutions sidérales; leur ensemble peut être exprimé par une série fort convergente de sinus d'angles multiples de son mouvement, série dont il est facile de déterminer les coefficiens, au moyen de quelques observations choisies.

On aura ensuite la loi du rayon vecteur de Mars, en comparant les observations de cette planète vers ses quadratures ou ce rayon se présente sous le plus grand angle. Dans le triangle formé par les droites qui joignent les centres de la terre, du soleil et de Mars, l'observation donne directement l'angle à la terre; la loi du mouvement héliocentrique de Mars donne l'angle au soleil, et l'on conclut le rayon vecteur de Mars, en parties de celui de la terre, qui lui-même est donné en parties de la distance moyenne de la terre

au soleil. La comparaison d'un grand nombre de rayons vecteurs ainsi déterminés, fera connaître la loi de leurs variations correspondantes aux angles qu'ils forment avec une droite invariable, et l'on pourra tracer la figure de l'orbite.

Ce fut par une méthode à peu près semblable, que Keplerreconnut l'alongement de l'orbe de Mars: il eut l'heureuse idée de comparer sa figure avec celle de l'ellipse, en plaçant le soleil à l'un des foyers; et les observations de Ticho, exactement représentées dans l'hypothèse d'un orbe elliptique, ne lui laissèrent aucun doute sur la vérité de cette hypothèse.

On nomme périhélie, l'extrémité du grand axe, la plus voisine du soleil; et aphélie, l'extrémité la plus éloignée. C'est au périhélie, que la vîtesse angulaire de Mars autour du soleil est la plus grande: elle diminue ensuite à mesure que le rayon vecteur augmente, et elle est la plus petite à l'aphélie. En comparant cette vîtesse aux puissances du rayon vecteur; on trouve qu'elle est réciproque à son carré, ensorte que le produit du mouvement journalier héliocentrique de Mars, par le carré de son rayon vecteur, est toujours le même. Ce produit est le double du petit secteur que ce rayon trace, chaque jour, autour du soleil; l'aire qu'il décrit en partant d'une ligne invariable passant par le centre du soleil, croît donc comme le nombre des jours écoulés depuis l'époque où la planète était sur cette ligne; ainsi les aires décrites par le rayon vecteur de Mars, sont proportionnelles aux temps.

Ces lois du mouvement de Mars, découvertes par Kepler, étant les mêmes que celles du mouvement apparent du soleil, développées dans le chapitre II du premier livre; elles ont également lieu pour la terre. Il était naturel de les étendre aux autres planètes; Kepler établit donc comme lois fondamentales du mouvement de ces corps, les deux suivantes que toutes les observations ont confirmées.

Les orbes des planètes sont des ellipses dont le centre du soleil occupe un des foyers.

Les aires décrites autour de ce centre, par les rayons vecteurs des planètes, sont proportionnelles aux temps employés à les décrire.

Ces lois suffisent pour déterminer le mouvement des planètes

autour du soleil; mais il est nécessaire de connaître pour chacune d'elles, sept quantités que l'on nomme élémens du mouvement elliptique. Cinq de ces élémens relatifs au mouvement dans l'ellipse, sont 1°. la durée de la révolution sidérale; 2°. le demi-grand axe de l'orbite, ou la moyenne distance de la planète au soleil; 3°. l'excentricité, d'où résulte la plus grande équation du centre; 4º. la longitude moyenne de la planète à une époque donnée; 5°. la longitude du périhélie à la même époque. Les deux autres élémens se rapportent à la position de l'orbite et sont, 1°. la longitude à une époque donnée, des nœuds de l'orbite, ou de ses points d'intersection avec un plan que l'on suppose ordinairement être celui de l'écliptique; 2°. l'inclinaison de l'orbite sur ce plan. Il y a donc quarante-neuf élémens à déterminer, pour les sept planètes connues avant le siècle actuel. Le tableau suivant présente tous ces élémens pour le premier instant de ce siècle, c'est-à-dire pour le premier janvier 1801, à minuit, temps moyen à Paris.

L'examen de ce tableau nous montre que les durées des révolutions des planètes croissent avec leurs moyennes distances au soleil. Kepler chercha pendant long-temps, un rapport entre ces durées et ces distances : après un grand nombre de tentatives continuées pendant dix-sept ans, il reconnut enfin, que les carrés des temps des révolutions des planètes, sont entre eux comme les cubes des grands axes de leurs orbites.

Telles sont les lois du mouvement des planètes, lois fondamentales qui donnant une face nouvelle à l'astronomie, ont conduit à la découverte de la pesanteur universelle.

Les ellipses planétaires ne sont point inaltérables: leurs grands axes paraissent être toujours les mêmes; mais leurs excentricités, teurs inclinaisons sur un plan fixe, les positions de leurs nœuds et de leurs périhélies, sont assujéties à des variations qui jusqu'à présent, semblent croître proportionnellement aux temps. Ces variations ne devenant bien sensibles que par la suite des siècles, elles ont été nommées inégalités séculaires. Il n'y a aucun doute sur leur existence; mais les observations modernes n'étant pas assez éloignées entre elles, et les observations anciennes n'étant pas suffisamment exactes pour les fixer avec précision; il reste

encore un peu d'incertitude sur leur grandeur. Le tableau suivant offre les valeurs qui paraissent le mieux satisfaire à l'ensemble de ces observations.

On remarque encore des inégalités périodiques qui troublent les mouvemens elliptiques des planètes. Celui de la terre en est un peu altéré; car on a vu précédemment que le mouvement elliptique apparent du soleil paraît l'être. Mais ces inégalités sont principalement sensibles dans les deux plus grosses planètes, Jupiter et Saturne. En comparant les observations modernes aux anciennes, les astronomes ont remarqué une diminution dans la durée de la révolution de Jupiter, et un accroissement dans celle de la révolution de Saturne. Les observations modernes comparées entre elles, donnent un résultat contraire; ce qui semble indiquer dans le mouvement de ces planètes, de grandes inégalités dont les périodes sont fort longues. Dans le siècle précédent, la durée de la révolution de Saturne a paru différente suivant les points de l'orbite d'où l'on a compté le départ de la planète : ses retours ont été plus rapides à l'équinoxe du printemps, qu'à celui d'automne. Enfin, Jupiter et Saturne éprouvent des inégalités qui s'élèvent à plusieurs minutes, et qui paraissent dépendre de la situation de ces planètes, soit entre elles, soit à l'égard de leurs périhélies. Ainsi, tout annonce que dans le système planétaire, indépendamment de la cause principale qui fait mouvoir les planètes dans des orbes elliptiques autour du soleil; il existe des causes particulières qui troublent leurs mouvemens, et qui altèrent à la longue, les élémens de leurs ellipses.

TABLEAU DU MOUVEMENT ELLIPTIQUE DES PLANÈTES.

Durées de leurs révolutions sidérales.

Mercure	87 ^{jo}	are,96925804
Vénus	224	,70078690
La Terre	3 65	,25638350
Mars	686	,9796458
Jupiter	4332	,5851167
Saturne		,3221613
Uranus	3 0688	,7126872.

Demi-grands axes des orbites, ou distances moyennes.
Mercure 0,3870981
Vénus 0,7233316
La Terre
Mars 1,5236923
Jupiter 5,202776
Saturne
Uranus 19,1833050.
Rapport de l'excentricité au demi-grand axe au commencement de 1801.
Mercure 0,20551494
Vénus
La Terre
Mars 0,0933070
Jupiter 0,04816365
Saturne 0,05613161
Uranus
Variations séculaires de ce rapport. (Le signe — indique une diminution.)
Mercure
Vénus
La Terre
Mars
Jupiter 0,000160360
Saturne
Uranus
Longitude moyenne pour le minuit qui sépare le 31 décembre 1800, et le premier janvier 1801, temps moyen à Paris.
Mercure
Vénus 11, 9 325 9
La Terre
Mars 71 ,24071
Jupiter,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Saturne,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Uranus 197 54948.

EXPOSITION

Longitude moyenne du périhélie, à la même époque.
Mercure 82°,6256
Vénus 143 ,0349
La Terre
Mars 369 ,3323
Jupiter 12,3816
Saturne 99, 0549
Uranus 185 ,9574
Mouvement sidéral et séculaire du périhélie.
Mercure 1801",22
Vénus
La Terre 3040 ,01
Mars 4882 ,70
Jupiter 2054,44
Saturne 5978 ,67
Uranus 740 ,98.
Inclinaison de l'orbite à l'écliptique au commencement de 1801
Inclinaison de l'orbite à l'écliptique au commencement de 1801 Mercure
Mercure
Mercure 7°,78058 Vénus 3,76807 La Terre 0,00000
Mercure 7°,78058 Vénus 3,76807 La Terre 0,00000 Mars 2,05746
Mercure 7°,78058 Vénus 3,76807 La Terre 0,00000 Mars 2,05746 Jupiter 1,46040
Mercure 7°,78058 Vénus 3,76807 La Terre 0,00000 Mars 2,05746 Jupiter 1,46040 Saturne 2,77097
Mercure 7°,78058 Vénus 3,76807 La Terre 0,00000 Mars 2,05746 Jupiter 1,46040
Mercure 7°,78058 Vénus 3,76807 La Terre 0,00000 Mars 2,05746 Jupiter 1,46040 Saturne 2,77097
Mercure 7°,78058 Vénus 3,76807 La Terre 0,00000 Mars 2,05746 Jupiter 1,46040 Saturne 2,77097 Uranus 0,85990
Mercure 7°,78058 Vénus 3,76807 La Terre 0,00000 Mars 2,05746 Jupiter 1,46040 Saturne 2,77097 Uranus 0,85990 Variation séculaire de l'inclinaison à l'écliptique vraie Mercure 56",12
Mercure 7°,78058 Vénus 3,76807 La Terre 0,00000 Mars 2,05746 Jupiter 1,46040 Saturne 2,77097 Uranus 0,85990 Váriation séculaire de l'inclinaison à l'écliptique vraie Mercure 56",12 Vénus 14,05 La Terre 0,00
Mercure 7°,78058 Vénus 3,76807 La Terre 0,00000 Mars 2,05746 Jupiter 1,46040 Saturne 2,77097 Uranus 0,85990 Váriation séculaire de l'inclinaison à l'écliptique vraie Mercure 56",12 Vénus - 14,05 La Terre 0,00 Mars - 0,81
Mercure 7°,78058 Vénus 3,76807 La Terre 0,00000 Mars 2,05746 Jupiter 1,46040 Saturne 2,77097 Uranus 0,85990 Variation séculaire de l'inclinaison à l'écliptique vraie Mercure 56",12 Vénus - 14,05 La Terre 0,00 Mars - 0,81 Jupiter - 69,77
Mercure 7°,78058 Vénus 3,76807 La Terre 0,00000 Mars 2,05746 Jupiter 1,46040 Saturne 2,77097 Uranus 0,85990 Váriation séculaire de l'inclinaison à l'écliptique vraie Mercure 56",12 Vénus 14,05 La Terre 0,00

Longitude du nœud ascendant au commencement de 1801.

Mercure	51°,0651
Vénus,	83 ,2262
La Terre	
Mars	53 ,3344
Jupiter	109 ,3758
Saturne	124,3662
Uranus	80,9488.

Mouvement sidéral et séculaire du nœud sur l'écliptique vraie.

Mercure — 2414	″,3g
Vénus — 5775	,92
La Terre o	,00
Mars — 7187	,50
Jupiter — 4880	97
Saturne — 5995	,35
Uranus—11107	,43.

On ne peut pas encore avoir avec précision, les élémens des orbites des quatre petites planètes nouvellement découvertes : le temps depuis lequel on les observe, est trop court : d'ailleurs les perturbations considérables qu'elles éprouvent, n'ont pas encore été déterminées. Voici les élémens elliptiques qui jusqu'à présent satisfont aux observations, mais que l'on ne doit regarder que comme une première ébauche de la théorie de ces planètes.

Durées des révolutions sidérales.

Cérès	1681 joi	118,370
Pallas		
Junon	1594	,023
Vesta	1326	,930.

Demi-grands axes des orbites.

Cérès	2,76722
Pallas	2,77188
Junon	2,67035
Vesta	2,36319.

EXPOSITION

Rapport	de	l'excentricité	au	demi-grand	axe.
---------	----	----------------	----	------------	------

Cérès 0,078502
Pallas 0,241600
Junon 0,254311
Vesta 0,089128
Longitude moyenne à minuit, commencement de 1810.
Cérès 67°,9168
Pallas 140 ,7282
Junon
Vesta 117,6619,
Longitude du périhélie, à la même époque,
Cérès 163°,0841
Pallas 134 ,3480
Junon 59,1364
Vesta 278,1191
Inclinaison de l'orbite à l'écliptique,
Cérès 11°,8060
Pallas 38 ,4302
Jumon
Vesta
Longitude du nœud ascendant au commencement de 1810.
Cérès
Pallas
Junon
Vesta 114,6969

CHAPITRE V.

De la figure des orbes des Comètes, et des lois de leur mouvement autour du Soleil.

Le soleil étant au foyer des orbes planétaires, il est naturel de le supposer pareillement au foyer des orbes des comètes. Mais ces astres disparaissant après s'être montrés pendant quelques mois au plus; leurs orbes, au lieu d'être presque circulaires comme ceux des planètes, sont très-alongés, et le soleil est fort voisin de la partie dans laquelle ils sont visibles. L'ellipse, au moyen des nuances qu'elle présente depuis le cercle jusqu'à la parabole, peut représenter ces orbes divers; l'analogie nous porte donc à mettre les comètes en mouvement dans des ellipses dont le soleil occupe un des foyers, et à les y faire mouvoir suivant les mêmes lois que les planètes, ensorte que les aires tracées par leurs rayons vecteurs, soient proportionnelles aux temps.

Il est presque impossible de connaître la durée de la révolution d'une comète, et par conséquent le grand axe de son orbe, par les observations d'une seule de ses apparitions; on ne peut donc pas alors déterminer rigoureusement l'aire que trace son rayon vecteur dans un temps donné. Mais on doit considérer que la petite portion d'ellipse, décrite par la comète pendant son apparition, peut se confondre avec une parabole, et qu'ainsi l'on peut calculer son mouvement dans cet intervalle, comme s'il était parabolique.

Suivant les lois de Kepler, les secteurs tracés dans le même temps par les rayons vecteurs de deux planètes, sont entre eux comme les surfaces de leurs ellipses, divisées par les temps de leurs révolutions : et les carrés de ces temps sont comme les cubes des demi-grands axes. Il est facile d'en conclure que si l'on imagine une planète mue dans un orbe circulaire dont le rayon soit égal à la distance périhélie d'une comète; le secteur décrit par le rayon vecteur de la comète, sera au secteur correspondant décrit par le rayon vecteur de la planète, dans le rapport de la racine carrée de la distance aphélie de la comète, à la racine carrée du demigrand axe de son orbe, rapport qui, lorsque l'ellipse se change en parabele, devient celui de la racine carrée de deux, à l'unité. On a ainsi le rapport du secteur de la comète, à celui de la planète fictive; et il est aisé par ce qui précède, d'avoir le rapport de ce secteur, à celui que trace dans le même temps, le rayon vecteur de la terre. On peut donc déterminer pour un instant quelconque, à partir de l'instant du passage de la comète par le périhélie, l'aire tracée par son rayon vecteur, et fixer sa position sur la parabole qu'elle est censée décrire.

Il ne s'agit que de tirer des observations, les élémens du mouvement parabolique, c'est-à-dire, la distance périhélie de la comète, en parties de la moyenne distance du soleil à la terre, la position du périhélie, l'instant du passage par le périhélie, l'inclinaison de l'orbe à l'écliptique et la position de ses nœuds. La recherche de ces cinq élémens présente de plus grandes difficultés, que celle des élémens des planètes qui toujours visibles, peuvent être comparées dans les positions les plus favorables à la détermination de ces élémens; au lieu que les comètes ne paraissent que pendant fort peu de temps, et presque toujours dans des circonstances où leur mouvement apparent est très compliqué par le mouvement réel de la terre, que nous leur transportons en sens contraire. Malgré ces difficultés, on est parvenu par diverses méthodes, à déterminer les élémens des orbes des comètes. Trois observations complètes sont plus que suffisantes pour cet objet : toutes les autres servent à confirmer l'exactitude de ces élémens, et la vérité de la théorie que nous venons d'exposer. Plus de cent comètes dont les nombreuses observations sont exactement représentées par cette théorie, la mettent à l'abri de toute atteinte. Ainsi, les comètes que l'on a regardées pendant long-temps, comme des météores, sont des astres semblables aux planètes : leurs mouvemens et leurs

retours sont réglés suivant les mêmes lois que les mouvemens planétaires.

Observons ici comment le vrai système de la nature, en se développant, se confirme de plus en plus. La simplicité des phénomènes célestes dans la supposition du mouvement de la terre, comparée à leur extrême complication dans celle de son immobilité, rend la première de ces suppositions fort vraisemblable. Les lois du mouvement elliptique, communes alors aux planètes et à la terre, augmentent beaucoup cette vraisemblance qui devient plus grande encore; par la considération du mouvement des comètes, assujéti aux mêmes lois.

Ces astres ne se meuvent pas tous dans le même sens, comme les planètes. Les uns ont un mouvement réel direct; d'autres ont un mouvement rétrograde. Les inclinaisons de leurs orbes ne sont point renfermées dans une zone étroite, comme celles des orbes planétairest elles offrent toutes les variétés d'inclinaison, depuis l'orbe couché sur le plan de l'écliptique, jusqu'à l'orbe perpendiculaire à ce plan.

On reconnaît une comète, quand elle reparaît, par l'identité des élémens de son orbite, avec ceux de l'orbite d'une comète déjà observée. Si la distance périhélie, la position du périhélie et des nœuds, et l'inclinaison de l'orbite sont à fort peu près les mêmes: il est alors trés-probable que la comète qui paraît, est celle que l'on avait observée précédemment, et qui, après s'être éloignée à une distance où elle était invisible, revient dans la partie de son orbite, voisine du soleil. Les durées des révolutions des comètes étant fort longues, et ces astres n'ayant été observés avec un peu de soin; que depuis deux siècles; on ne connaît encore avec certitude, que le temps de la révolution d'une seule comète, celle de 1759, que l'on avait déjà observée en 1682, 1607 et 1531. Cette comète emploie environ soixante-seize ans à revenir à son périhélie; ainsi en prenant pour unité, la moyenne distance du soleil à la terre, le grand axe de son orbite, est à peu près 35,9; et comme sa distance périhélie n'est que 0,58, elle s'éloigne du soleil, au moins trentecinq fois plus que la terre, en parcourant une ellipse fort excentrique. Son retour au périhélie a été de treize mois plus long de 1531 à 1607, que de 1607 à 1689; il a été de dix-huit mois plus court de 1607 à 1682, que de 1682 à 1759. Il paraît donc que des causes semblables à celles qui altèrent le mouvement elliptique des planètes, troublent celui des comètes d'une manière encore plus sensible.

On a soupçonné le retour de quelques autres comètes: le plus probable de ces retours etait celui de la comète de 153s, que l'on a cru être la même que la comète de 1661, et dont on avait fixé la révolution à cent vingt-neuf ans. Mais cette comète n'ayant point reparn en 1790; il y a tout lieu de croire que ces deux comètes ne sont pas la même; et l'on n'en sera point surpris, si l'on considère l'imperfection des observations d'Appien et de Fracastor, d'après lesquelles ses élémens en 1532, ont été déterminés. Ces observations sont ei grossières, qu'elles laissent suivant Méchain qui les a bien discutées, une incertitude de 41° sur la position du nœud, de 10° sur l'inclinaison, de 22° sur la position du périhélie, et de 0,255 sur la distance périhélie.

La nébulosité dont les comètes sont presque toujours environnées, paraît être formée des vapeurs que la chaleur solaire élève de leur surface. On conçoit, en effet, que la grande chaleur qu'elles éprouvent vers leur périhélie, doit raréfier les matières congelées par le froid qu'elles éprouvaient à leurs aphélies. Cette chaleur est excessive pour les comètes dont la distance périhélie est très-petite. La comète de 1680 fut dans son périhélie, cent soixante et six fois plus près du soleil que la terre, et par conséquent, elle dut en éprouver une chaleur vingt-sept mille cinq cents fois plus grande que celle qu'il communique à la terre, si, comme tout porte à le penser, sa chaleur est proportionnelle à l'intensité de sa lumière. Cette grande chaleur fort supérieure à celle que nous pouvons produire, volatiliserait selon toute apparence, la plupart des substances terrestres.

Quelle que soit la nature de la chaleur, nous savons certainement qu'elle dilate tous les corps, et qu'elle en réduit un grand nombre, de solides en fluides, et de fluides en vapeurs. Ces changemens sont marqués par de singuliers phénomènes que nous allons suivre sur la glace. Considérons un volume de neige ou de glace pilée, dans un vase ouvert et soumis à l'action d'une grande chaleur. Si la température de cette glace est au-dessous de celle de la glace

Digitized by Google

fondante, elle augmentera successivement, jusqu'à la température de zéro degrés. Parvenue à ce point, la glace se fondra par de nouvelles additions de chaleur; mais si l'on a soin de l'agiter jusqu'à ce qu'elle soit fondue, l'eau produite restera toujours à zéro de température : la chaleur communiquée par le vase, ne sera point sensible sur le thermomètre que l'on y plonge; elle sera toute entière, employée à rendre la glace, fluide. Ensuite, la chaleur ajoutée élevera la température de ce fluide et le thermomètre, jusqu'au moment de l'ébullition; alors le thermomètre redeviendra stationnaire, et la chaleur communiquée par le vase, sera toute employée à réduire l'eau en vapeurs qui seront à la même température que l'eau bouillante. L'eau produite par la fonte de la glace, et les vapeurs dans lesquelles se réduit l'eau bouillante, absorbent donc au moment de leur formation, une grande quantité de chaleur qui reparaît dans le retour des vapeurs aqueuses à l'état d'eau, et de l'eau à l'état de glace; car les vapeurs en se condensant sur un corps froid, lui communiquent beaucoup plus de chaleur qu'il n'en recevrait d'un poids égal d'eau bouillante; d'ailleurs, on sait que l'eau peut se conserver fluide à plusieurs degrés au-dessous de zéro, et que dans cet état, il suffit de l'agiter un peu, pour la transformer en glaçons; alors le thermomètre que l'on y tient plongé, s'élève et monte à zéro, par la chaleur que ce changement développe. Tous les corps que nous pouvons faire passer de l'état solide à l'état liquide, offrent de semblables phénomènes; mais les températures auxquelles leur fusion et leur ébullition commencent, sont très-différentes pour chacun d'eux.

Le phénomène que nous venons d'exposer, quoique très-étendu, n'est qu'un cas particulier de cette loi générale : dans tous les changemens d'état que la chaleur fait prendre à un système de corps, une partie de la chaleur est employée à les produire, et devient latente, c'est-à-dire, insensible au thermomètre; mais elle reparaît, lorsque le système revient à son premier état.

Ainsi lorsqu'un gaz contenu dans une enveloppe flexible, se dilate par un accroissement de température; le thermomètre n'est point affecté par la partie de la chaleur, qui produit cet effet; mais cette partie latente devient sensible, lorsque l'on ramène par la compression, le gaz à sa densité primitive.

Il existe des corps qui ne peuvent pas devenir fluides, par les plus grandes chaleurs que nous puissions exciter. Il en est d'autres que le plus grand froid qu'ils éprouvent sur la terre, ne peut pas réduire à l'état solide : tels sont les fluides qui forment notre atmosphère, et qui, malgré la pression et le froid auxquels on les a soumis, se sont jusqu'ici maintenus dans l'état de vapeurs. Mais leur analogie avec les fluides aériformes dans lesquels nous réduisons par la chaleur, un grand nombre de substances, et leur condensation par la compression et par le froid, ne permettent pas de douter que ces fluides ne soient des corps extrêmement volatils, qu'un grand froid réduirait à l'état solide. Il suffirait pour leur faire prendre cet état, d'éloigner la terre du soleil; comme il suffirait de l'en rapprocher, pour faire entrer l'eau et plusieurs autres corps, dans notre atmosphère. Ces grandes vicissitudes ont lieu sur les comètes, et principalement sur celles qui approchent très-près du soleil, dans leur périhélie. Les nébulosités qui les environnent, étant le résultat de la vaporisation des fluides à leur surface; le refroidissement qui en est la suite, doit tempérer l'excessive chaleur due à leur proximité du soleil; et la condensation des mêmes fluides vaporisés, quand elles s'en éloignent, répare en partie, la diminution de chaleur que cet éloignement doit produire; ensorte que le double effet de la vaporisation des fluides et de la condensation des vapeurs, rapproche considérablement les limites de la plus grande chaleur et du plus grand froid que les comètes éprouvent, à chacune de leurs révolutions.

En observant les comètes avec de forts télescopes, et dans des circonstances où nous ne devrions apercevoir qu'une partie de leur hémisphère éclairé, on n'y découvre point de phases. Une seule comète, celle de 1682, en a présenté à Hevelius et La Hire. On verra dans la suite, que les masses des comètes sont d'une petitesse extrême; les diamètres de leurs disques doivent donc être presqu'insensibles, et ce qu'on nomme leur noyau, est selon toute apparence, formé en grande partie, des couches les plus denses de la nébulosité qui les environne : aussi Herschell, avec de très-forts

télescopes, est-il parvenu à reconnaître dans le noyau de la cométe de 1811, un point brillant qu'il a jugé avec raison, être le disque même de la comète. Ces couches sont encore extrêmement rares, puisque l'on a quelquesois aperçu des étoiles au travers.

Les queues que les comètes traînent après elles, paraissent être composées des molécules les plus volatiles que la chaleur du soleil élève de leurs surfaces, et que l'impulsion de ses rayons en éloigne indéfiniment. Cela résulte de la direction de ces traînées de vapeurs, toujours situées au-delà de la tête des comètes relativement au soleil, et qui croissant à mesure que ces astres s'en approchent, n'atteignent leur maximum qu'après le passage au périhélie. L'extrême ténuité des molécules, augmentant le rapport des surfaces aux masses; elle peut rendre sensible, l'impulsion des rayons solaires, qui doit alors faire décrire à peu près à chaque molécule, un orbe hyperbolique, le soleil étant au foyer de l'hyperbole conjuguée correspondante. La suite des molécules mues sur ces courbes depuis la tête de la comète, forme une traînée lumineuse opposée au soleil, et un peu inclinée au côté que la comète abandonne en s'avançant dans son orbite : c'est en effet, ce que l'observation nous montre. La promptitude avec laquelle ces queues s'accroissent, peut faire juger de la rapidité d'ascension de leurs molécules. On conçoit que les différences de volatilité, de grosseur et de densité des molécules, doivent en produire de considérables dans les courbes qu'elles décrivent ; ce qui apporte de grandes variétés dans la forme, la longueur et la largeur des queues des comètes. Si l'on combine ces effets avec ceux qui peuvent résulter d'un mouvement de rotation dans ces astres, et avec les illusions de la parallaxe annuelle; on pourra rendre raison des singuliers phénomènes que leurs nébulosités et leurs queues nous présentent.

Quoique les dimensions des queues des comètes soient de plusieurs millions de myriamètres, cependant elles n'affaiblissent pas sensiblement la lumière des étoiles que l'on observe à travers; elles sont donc d'une rareté extrême, et leurs masses sont probablement inférieures à celles des plus petites montagnes de la térre; elles ne peuvent ainsi par leur rencontre avec elle, y produire aucun effet sensible. Il est très-probable qu'elles l'ont plusieurs fois

enveloppée, sans avoir été aperçues. L'état de l'atmosphère influe considérablement sur leur longueur et leur largeur apparentes : entre les tropiques, elles paraissent beaucoup plus grandes que dans nos climats. Pingré dit avoir observé qu'une étoile qui paraissait dans la queue de la comète de 1769, s'en éloigna dans très-peu d'instans. Mais cette apparence était une illusion produite par des nuages légers de notre atmosphère, assez épais pour intercepter la faible lumière de cette queue, et cependant assez rares pour laisser apercevoir la lumière beaucoup plus vive de l'étoile. On ne peut pas attribuer aux molécules de vapeurs dont ces queues sont formées, des oscillations aussi rapides, dont l'étendue surpasserait un million de myriamètres.

Les substances évaporables d'une comète, diminuant à chacun de ses retours au périhélie; elles doivent après plusieurs retours, se dissiper entièrement dans l'espace, et la comète ne doit plus alors présenter qu'un noyau fixe; ce qui doit arriver plus promptement pour les comètes dont la révolution est plus courte. On peut conjecturer que celle de 1682, dont la révolution n'est que de soixante-seize ans, et la seule qui jusqu'ici ait présenté des phases, approche de cet état de fixité. Si le noyau est trop petit pour être aperçu, ou si les substances évaporables qui restent à sa surface, sont en trop petite quantité, pour former par leur évaporation, une tête de comète, sensible; l'astre deviendra pour toujours invisible. Peut-être est-ce une des causes qui rendent si rares, les réapparitions des comètes : peut-être encore cette cause a-t-elle fait disparaître pour nous, la comète de 1770, qui pendant son apparition, a décrit une ellipse dans laquelle la révolution n'est que de cinq ans et demi; et qui, si elle a continué de la décrire, est depuis cette époque, revenue sept sois au moins à son périhélie. Peut-être enfin est-ce par la même cause, que plusieurs comètes dont on pouvait suivre la trace dans le ciel au moyen des élémens de leurs orbites, ont disparu plutôt qu'on ne devait s'y attendre.

CHAPITRE VI.

Des lois du mouvement des satellites autour de leurs planètes.

Nous avons exposé dans le sixième chapitre du premier livre, les lois du mouvement du satellite de la terre; il nous reste à considérer celles du mouvement des satellites de Jupiter, de Saturne et d'Uranus.

Si l'on prend pour unité, le demi-diamètre de l'équateur de Jupiter, supposé de 56",702, à la moyenne distance de la planète au soleil; les distances moyennes des satellites à son centre, et les durées de leurs révolutions sidérales seront

Distances moyennes.			Durées.	
I.	satellite	6,04853	1 ⁱ · ,769137788148.	
II.	sat	9,62347	3 ,551181017849.	
III.	sat	15,35024	7 ,154552783970.	
IV.	sat	26,99835	16,688769707084.	

Les durées des révolutions synodiques des satellites, ou les intervalles des retours de leurs conjonctions moyennes à Jupiter, sont faciles à conclure des durées de leurs révolutions sidérales, et de celle de la révolution de Jupiter. En comparant leurs moyennes distances, aux durées de leurs révolutions; on observe entre ces quantités, le beau rapport que nous avons vu exister entre les durées des révolutions des planètes et leurs moyennes distances au soleil; c'est-à-dire que les carrés des temps des révolutions sidérales des satellites, sont entre eux comme les cubes de leurs moyennes distances au centre de Jupiter.

Les fréquentes éclipses des satellites ont fourni aux astronomes,

le moyen de suivre leurs mouvemens, avec une précision que l'on ne peut pas attendre de l'observation de leur distance angulaire à Jupiter. Elles ont fait connaître les résultats suivans.

L'ellipticité de l'orbe du premier satellite est insensible : son plan coïncide à très-peu près avec celui de l'équateur de Jupiter, dont l'inclinaison à l'orbe de cette planète est de 4,4352.

L'ellipticité de l'orbe du second satellite est pareillement insensible : son inclinaison sur l'orbe de Jupiter est variable, ainsi que la position de ses nœuds. Toutes ces variations sont représentées à peu près, en supposant l'orbe du satellite, incliné d'environ 5152" à l'équateur de Jupiter, et en donnant à ses nœuds sur ce plan, un mouvement rétrograde dont la période est de trente années juliennes.

On observe une petite ellipticité dans l'orbe du troisième satellite : l'extrémité de son grand axe, la plus voisine de Jupiter, et que l'on nomme périjove, a un mouvement direct, mais variable; l'excentricité de l'orbe est également assujétie à des variations très-sensibles. Vers la fin du dernier siècle, l'équation du centre était à son maximum. et s'élevait à peu près à 2458": elle a ensuite diminué, et vers 1777, elle était à son minimum et d'environ 949". L'inclinaison de l'orbe de ce satellite sur celui de Jupiter, et la position de ses nœuds sont variables: on représente à peu près toutes ces variations, en supposant l'orbe incliné d'environ 2284" sur l'équateur de Jupiter, et en donnant à ses nœuds, un mouvement rétrograde sur le plan de cet équateur, dans une période de 142 ans. Cependant, les astronomes qui ont déterminé par les éclipses de ce satellite, l'inclinaison de l'équateur de Jupiter sur le plan de son orbite, l'ont trouvée constamment de neuf ou dix minutes, plus petite que par les éclipses du premier et du second satellite,

L'orbe du quatrième a une ellipticité très-sensible : son périjove a un mouvement annuel direct d'environ 7959". Cet orbe est incliné de 2°,7 environ à l'orbe de Jupiter. C'est en vertu de cette inclinaison, que le quatrième satellite passe souvent derrière la planète, relativement au soleil, sans être éclipsé. Depuis la découverte des satellites, jusqu'en 1760, l'inclinaison a paru constante, et le mouvement annuel des nœuds sur l'orbite de Jupiter, a été direct

et de 788". Mais depuis 1760, l'inclinaison a augmenté et le mouvement des nœuds a diminué, de quantités sensibles. Nous reviendrons sur toutes ces variations, quand nous en développerons la cause.

Indépendamment de ces variations, les satellites sont assujétis à des inégalités qui troublent leurs mouvemens elliptiques, et qui rendent leur théorie fort compliquée. Elles sont principalement sensibles dans les trois premiers satellites dont les mouvemens offrent des rapports très-remarquables.

En comparant les temps de leurs révolutions, on voit que celui de la révolution du premier satellite, n'est qu'environ la moitié de la durée de la révolution du second, qui n'est elle-même qu'environ la moitié de celle de la révolution du troisième satellite. Ainsi, les moyens mouvemens angulaires de ces trois satellites, suivent à peu près une progression sous-double. S'ils la suivaient exactement, le moyen mouvement du premier satellite, plus deux fois celui du troisième, serait rigoureusement égal à trois fois le moyen mouvement du second satellite. Mais cette égalité est incomparablement plus approchée que la progression elle-même; ensorte que l'on est porté à la regarder comme rigoureuse, et à rejeter sur les erreurs des observations, les quantités très-petites dont elle s'en écarte : on peut au moins affirmer qu'elle subsistera pendant une longue suite de siècles.

Un résultat non moins singulier, et que les observations donnent avec la même précision, est que depuis la découverte des satellites, la longitude moyenne du premier, moins trois fois celle du second, plus deux fois celle du troisième, n'a jamais différé de deux angles droits, que de quantités presque insensibles.

Ces deux résultats subsistent également entre les moyens mouvemens et les longitudes moyennes synodiques; car le mouvement synodique d'un satellite, n'étant que l'excès de son mouvement sidéral sur celui de la planète; si l'on substitue dans les résultats précédens, les mouvemens synodiques, aux mouvemens sidéraux, le moyen mouvement de Jupiter disparaît, et ces résultats restent des mêmes. Il suit de là que d'ici à un très-grand nombre d'années au moins, les trois premiers satellites de Jupiter ne seront point éclipsés à-la-fois; mais dans les éclipses simultanées du second et du troisième, le premier sera toujours en conjonction avec Jupiter: il sera toujours en opposition, dans les éclipses simultanées du soleil, produites sur Jupiter, par les deux autres satellites.

Les périodes et les lois des principales inégalités de ces satellites. sont les mêmes. L'inégalité du premier avance ou retarde ses éclipses, de 223",5 en temps, dans son maximum. En comparant sa marche, aux positions respectives des deux premiers satellites. on a trouvé qu'elle disparaît, lorsque ces satellites vus du centre de Jupiter, sont en même temps, en opposition au soleil; qu'elle croît ensuite et devient la plus grande, lorsque le premier satellite, au moment de son opposition, est de 50° plus avancé que le second; qu'elle redevient nulle, lorsqu'il est plus avancé de 100°; qu'au-delà, elle prend un signe contraire et retarde les éclipses, et qu'elle augmente jusqu'à 150° de distance entre les satellites, où elle est à son maximum négatif; qu'elle diminue ensuite et disparaît à 200°, de distance; enfin, que dans la seconde moitié de la circonférence, elle suit les mêmes lois que dans la première. On a conclu de là, qu'il existe dans le mouvement du premier satellite autour de Jupiter, une inégalité de 5050',6 de degré, dans son maximum, et proportionnelle au sinus du double de l'excès de la longitude moyenne du premier satellité sur celle du second, excès égal à la différence des longitudes moyennes synodiques des deux satellites. La période de cette inégalité n'est pas de quatre jours : mais comment dans les éclipses du premier satellite, se transforme-t-elle dans une période de 4371,6592? C'est ce que nous allons expliquer.

Supposons que le premier et le second satellite partent ensemble, de leurs moyennes oppositions au soleil. A chaque circonférence que décrira le premier satellite, en vertu de son moyen mouvement synodique, il sera dans son opposition moyenne. Si l'on conçoit un astre fictif dont le mouvement angulaire soit égal à l'excès du moyen mouvement synodique du premier satellite, sur deux fois celui du second; alors le double de la différence des moyens mouvemens synodiques des deux satellites, sera dans les éclipses du premier, égal à un multiple de la circonférence, plus au mouvement de l'astre fictif; le sinus de ce dernier mouvement sera donc propor-

tionnel à l'inégalité du premier satellite dans ses éclipses, et pourra la représenter. Sa période est égale à la durée de la révolution de l'astre fictif, durée qui, d'après les moyens mouvemens synodiques des deux satellites, est de 4571,6592; elle est ainsi déterminée avec une plus grande précision, que par l'observation directe.

L'inégalité du second satellite suit une loi semblable à celle du premier, avec cette différence, qu'elle est constamment de signe contraire. Elle avance ou retarde les éclipses, de 1050",2 en temps, dans son maximum. En la comparant aux positions respectives des deux satellites; on observe qu'elle disparaît, lorsqu'ils sont à-la-fois, en opposition au soleil; qu'elle retarde ensuite de plus en plus les éclipses du second, jusqu'à ce que les deux satellites soient éloignés entre eux de cent degrés, à l'instant de ces phénomènes; que ce retard diminue et redevient nul, lorsque la distance mutuelle des deux satellites est de deux cents degrés; enfin, qu'au-delà de ce terme, les éclipses avancent de la même manière dont elles avaient précédemment retardé. On a conclu de ces observations, qu'il existe dans le mouvement du second satellite, une inégalité de 11920",7 de degré dans son maximum, et qui est proportionnelle et affectée d'un signe contraire, au sinus de l'excès de la longitude moyenne du premier satellite, sur celle du second, excès égal à la différence des moyens mouvemens synodiques des deux satellites.

Si tous deux partent ensemble de leur opposition moyenne au soleil; le second sera dans son opposition moyenne, à chaque circonférence qu'il décrira en vertu de son moyen mouvement synodique. Si l'on conçoit, comme précédemment, un astre dont le mouvement angulaire soit égal à l'excès du moyen mouvement synodique du premier satellite, sur deux fois celui du second; alors la différence des moyens mouvemens synodiques des deux satellites, sera dans les éclipses du second, égale à un multiple de la circonférence, plus au mouvement de l'astre fictif; l'inégalité du second satellite sera donc dans ses éclipses, proportionnelle au sinus du mouvement de cet astre fictif. On voit ainsi la raison pour laquelle la période et la loi de cette inégalité sont les mêmes que celles de l'inégalité du premier satellite.

L'influence du premier satellite, sur l'inégalité du second est

très-vraisemblable. Mais si le troisième produit dans le mouvement du second, une inégalité pareille à celle que le second semble produire dans le mouvement du premier, c'est-à-dire proportionnelle au sinus du double de la différence des longitudes moyennes du second et du troisième satellite; cette nouvelle inégalité se confondra avec celle qui est due au premier satellite; car en vertu du rapport qu'ont entre elles, les longitudes moyennes des trois premiers satellites, et que nous avons exposé ci-dessus, la différence des longitudes moyennes des deux premiers satellites, est égale à la demi-circonférence plus au double de la différence des longitudes moyennes du second et du troisième satellite, ensorte que le sinus de la première différence, est le même que le sinus du double de la seconde différence, mais avec un signe contraire. L'inégalité produite par le troisième satellite, dans le mouvement du second, aurait ainsi le même signe et suivrait la même loi que l'inégalité observée dans ce mouvement; il est donc fort probable que cette inégalité est le résultat de deux inégalités dépendantes du premier et du troisième satellite. Si par la suite des siècles, le rapport précédent entre les longitudes moyennes de ces trois satellites, cessait d'avoir lieu; ces deux inégalités maintenant confondues se sépareraient, et l'on pourrait déterminer par les observations, leur valeur respective. Mais on a vu que ce rapport doit subsister pendant très-long-temps, et nous verrons dans le quatrième livre, qu'il est rigoureux.

Enfin, l'inégalité relative au troisième satellite dans ses éclipses, comparée aux positions respectives du second et du troisième, offre les mêmes rapports que l'inégalité du second, comparée aux positions respectives des deux premiers satellites. Il existe donc dans le mouvement du troisième satellite, une inégalité proportionnelle au sinus de l'excès de la longitude moyenne du second satellite, sur celle du troisième, inégalité qui dans son maximum est de 808" de degré. Si l'on conçoit un astre dont le mouvement angulaire soit égal à l'excès du moyen mouvement synodique du second satellite, sur le double du moyen mouvement synodique du troisième; l'inégalité du troisième satellite, sera dans ses éclipses, proportionnelle au sinus du mouvement de cet astre fictif; or, en

vertu du rapport qui existe entre les longitudes moyennes des trois satellites, le sinus de ce mouvement est, au signe près, le même que celui du mouvement du premier astre fictif que nous avons considéré. Ainsi l'inégalité du troisième satellite dans ses éclipses, a la même période et suit les mêmes lois, que les inégalités des deux premiers satellites.

Telle est la marche des principales inégalités des trois premiers satellites de Jupiter, que Bradley avait entrevues, et que Vargentin a exposées ensuite dans un grand jour. Leur correspondance et celle des moyens mouvemens et des longitudes moyennes de ces satellites, semblent faire un système à part, de ces trois corps animés selon toute apparence, par des forces communes, sources de leurs communs rapports.

Considérons présentement les satellites de Saturne. Si nous prenons pour unité, le demi-diamètre de l'équateur de cette planète, vu de sa moyenne distance au soleil, et supposé de 25"; les distances moyennes des satellites à son centre, et les durées de leurs révolutions sidérales sont:

Distances moy	Durées.	
I	3,351	oi·,94271
II	4,300	1 ,37024
I II	5,284	1,88780
IV	6,819	2,73948
v	9,524	4 ,51749
V I	22,081	15 ,94530
VII	64,359	79 ,32960.

En comparant les durées des révolutions des satellites, à leurs moyennes distances au centre de Saturne; on retrouve le beau rapport découvert par Kepler, relativement aux planètes, et que nous avons vu exister dans le système des satellites de Jupiter, c'est-à-dire, que les carrés des temps des révolutions des satellites de Saturne, sont entre eux comme les cubes de leurs moyennes distances au centre de cette planète.

Le grand éloignement des satellites de Saturne, et la difficulté

142 EXPOSITION DU SYSTÈME DU MONDE.

d'observer leur position, n'a pas permis de reconnaître l'ellipticité de leurs orbites, et encore moins, les inégalités de leurs mouvemens. Cependant, l'ellipticité de l'orbite du sixième satellite est sensible.

Prenons ici pour unité, le demi-diamètre d'Uranus, supposé de 6", vu de la moyenne distance de la planète au soleil : les distances moyennes des satellites à son centre, et les durées de leurs révotutions sidérales sont d'après les observations d'Herschell:

Distances moy	Durées.	
I	13,120	5i.,8926
II	17,022	8 ,7068
ш	19,845	10 ,9611
IV	22,752	13 ,4559
V	45,507	38 ,0750
VI	91,008	

Ces durées, à l'exception de la seconde et de la quatrième, ont été conclues des plus grandes élongations observées, et de la loi suivant laquelle les carrés des temps des révolutions des satellites, sont comme les cubes de leurs moyennes distances au centre de la planète, loi que les observations confirment à l'égard du second et du quatrième satellite, les seuls qui soient bien connus; ensorte qu'elle doit être regardée comme une loi générale du mouvement d'un système de corps qui circulent autour d'un foyer commun.

Maintenant, quelles sont les forces principales qui retiennent les planètes, les satellites et les comètes, dans leurs orbes respectifs? quelles forces particulières troublent leurs mouvemens elliptiques? quelle cause fait rétrograder les équinoxes, et mouvoir les axes de rotation de la terre et de la lune? par quelles forces enfin, les eaux de la mer sont-elles soulevées deux fois par jour? la supposition d'un seul principe dont toutes ces lois dépendent, est digne de la simplicité et de la majesté de la nature. La généralité des lois que présentent les mouvemens célestes, semble en indiquer l'existence; déjà même, on entrevoit ce principe, dans les rapports de ces phénomènes avec la position respective des corps du système solaire. Mais pour l'en faire sortir avec évidence, il faut connaître les lois du mouvement de la matière.

LIVRE TROISIÈME.

DES LOIS DU MOUVEMENT.

At nunc per maria ac terras sublimaque celi, Multa modis multis, varia ratione moveri Cernimus ante oculos.

LUCRET, lib. 1.

A u milieu de l'infinie variété des phénomènes qui se succèdent continuellement dans les cieux et sur la terre, on est parvenu à reconnaître le petit nombre de lois générales que la matière suit dans ses mouvemens. Tout leur obéit dans la nature; tout en dérive aussi nécessairement que le retour des saisons; et la courbe décrite par l'atôme léger que les vents semblent emporter au hasard, est réglée d'une manière aussi certaine, que les orbes planétaires. L'importance de ces lois dont nous dépendons sans cesse, aurait dû exciter la curiosité dans tous les temps; mais par une indifférence trop ordinaire à l'esprit humain, elles ont été ignorées jusqu'au commencement de l'avant-dernier siècle, époque à laquelle Galilée jeta les premiers fondemens de la science du mouvement, par ses belles découvertes sur la chute des corps. Les géomètres marchant sur les traces de ce grand homme, ont enfin réduit la mécanique entière, à des formules générales qui ne laissent plus à desirer que la perfection de l'analyse.

CHAPITRE PREMIER.

Des forces, de leur composition et de l'équilibre d'un point matériel.

Un corps nous paraît en mouvement, lorsqu'il change de situation par rapport à un système de corps que nous jugeons en repos. Ainsi dans un vaisseau mu d'une manière uniforme, les corps nous semblent se mouvoir, lorsqu'ils répondent successivement à ses diverses parties. Ce mouvement n'est que relatif; car le vaisseau se meut sur la surface de la mer qui tourne autour de l'axe de la terre dont le centre se meut autour du soleil qui lui-même est emporté dans l'espace, avec la terre et les planètes. Pour concevoir un terme à ces mouvemens, et pour arriver enfin à des points fixes d'où l'on puisse compter le mouvement absolu des corps; on imagine un espace sans bornes, immobile et pénétrable à la matière. C'est aux parties de cet espace réel ou idéal, que nous rapportons par la pensée, la position des corps; et nous les concevons en mouvement, lorsqu'ils répondent successivement à divers lieux de cet espace.

La nature de cette modification singulière en vertu de laquelle un corps est transporté d'un lieu dans un autre, est et sera toujours inconnue. Elle a été désignée sous le nom de force: on ne peut déterminer que ses effets et la loi de son action.

L'effet d'une force agissant sur un point matériel, est de le mettre en mouvement, si rien ne s'y oppose. La direction de la force, est la droite qu'elle tend à lui faire décrire. Il est visible que si deux forces agissent dans le même sens, elles s'ajoutent l'une à l'autre; et que si elles agissent en sens contraire, le point ne se meut qu'en vertu de leur différence, ensorte qu'il resterait en repos, si elles étaient égales. Si les directions de deux forces font entre elles un angle quelconque, leur résultante prendra une direction moyenne. On démontre par la seule géométrie, que si, à partir du point de concours des forces, on prend sur leurs directions, des droites pour les représenter; si l'on forme ensuite sur ces droites, un parallélogramme; sa diagonale représente pour la direction et la quantité, leur résultante.

On peut, à deux forces composantes, substituer leur résultante; et réciproquement on peut, à une force quelconque, en substituer deux autres dont elle serait la résultante; on peut donc décomposer une force, en deux autres parallèles à deux axes perpendiculaires entre eux et situés dans un plan qui passe par sa direction. Il suffit pour cela, de mener par la première extrémité de la droite qui représente cette force, deux lignes parallèles à ces axes, et de former sur ces lignes, un rectangle dont cette droite soit la diagonale. Les deux côtés du rectangle représenteront les forces dans lesquelles la proposée peut se décomposer parallèlement aux axes.

Si la force est inclinée à un plan donné de position; en prenant sur sa direction, à partir du point où elle rencontre le plan, une ligne pour la représenter; la perpendiculaire abaissée de l'extrémité de cette ligne sur le plan, sera la force primitive décomposée perpendiculairement à ce plan. La droite qui menée dans le plan, joint la force et la perpendiculaire, sera cette force décomposée parallèlement au plan. Cette seconde force partielle peut elle-même, se décomposer en deux autres parallèles à deux axes situés dans le plan et perpendiculaires l'un à l'autre. Ainsi toute force peut être décomposée en trois autres parallèles à trois axes perpendiculaires entre eux.

De là naît un moyen simple d'avoir la résultante d'un nombre quelconque de forces qui agissent sur un point matériel; car en décomposant chacune d'elles en trois autres parallèles à trois axes donnés de position, et perpendiculaires entre eux; il est clair que toutes les forces parallèles au même axe, se réduisent à une seule, égale à la somme de celles qui agissent dans un sens, moins la somme de celles qui agissent en sens contraire. Ainsi le point sera sollicité par trois forces perpendiculaires entre elles; et si l'on prend sur chacune de leurs directions, à partir du point de concours, trois

droites pour les représenter; si l'on forme ensuite sur ces droites, un parallélipipède rectangle; la diagonale de ce solide représentera pour la quantité et pour la direction, la résultante de toutes les forces qui agissent sur le point.

Quels que soient le nombre, la grandeur et la direction de ces forces; si l'on fait varier infiniment peu d'une manière quelconque, la position du point; le produit de la résultante, par la quantité dont le point s'avance suivant sa direction, est égal à la somme des produits de chaque force par la quantité correspondante. La quantité dont le point s'avance suivant la direction d'une force, est la projection de la droite qui joint les deux positions du point, sur la direction de la force : cette quantité doit être prise négativement, si le point s'avance en sens contraire de cette direction.

Dans l'état d'équilibre, la résultante de toutes les forces est nulle, si le point est libre. S'il ne l'est pas, la résultante doit être perpendiculaire à la surface ou à la courbe sur laquelle il est assujéti; et alors en changeant infiniment peu la position du point, le produit de la résultante par la quantité dont il s'avance suivant sa direction, est nul; ce produit est donc généralement nul, soit que l'on suppose le point libre, soit qu'on l'imagine assujéti sur une courbe ou sur une surface. Ainsi dans tous les cas, lorsque l'équilibre a lieu, la somme des produits de chaque force par la quantité dont le point s'avance suivant sa direction, en changeant infimiment peu de position, est nulle; et l'équilibre subsiste, si cette condition est remplie.

CHAPITRE II.

Du mouvement d'un point matériel.

Un point en repos, ne peut se donner aucun mouvement; puisqu'îl ne renferme pas en soi, de raison pour se mouvoir dans un sens plutôt que dans un autre. Lorsqu'il est sollicité par une force quelconque et ensuite abandonné à lui-même, il se meut constamment d'une manière uniforme dans la direction de cette force, s'il n'éprouve aucune résistance; c'est-à-dire, qu'à chaque instant, sa force et la direction de son mouvement sont les mêmes. Cette tendance de la matière à persévérer dans son état de mouvement ou de repos, est ce que l'on nomme inertie: c'est la première loi du mouvement des corps.

La direction du mouvement en ligne droite, suit évidemment de ce qu'il n'y a aucune raison pour que le point s'écarte plutôt à droite, qu'à gauche de sa direction primitive; mais l'uniformité de son mouvement n'est pas de la même évidence. La nature de la force motrice étant inconnue, il est impossible de savoir à priori, si cette force doit se conserver sans cesse. A la vérité, un corps étant incapable de se donner aucun mouvement, il paraît également incapable d'altérer celui qu'il a reçu ; ensorte que la loi d'inertie est au moins, la plus naturelle et la plus simple que l'on puisse imaginer. Elle est d'ailleurs confirmée par l'expérience : en effet, nous observons sur la terre, que les mouvemens se perpétuent plus long-temps, à mesure que les obstacles qui s'y opposent, viennent à diminuer; ce qui nous porte à croire que sans ces obstacles, ils dureraient toujours. Mais l'inertie de la matière est principalement remarquable dans les mouvemens célestes qui, depuis un grand nombre de siècles, n'ont point éprouvé d'altération sensible. Ainsi, nous regarderons

l'inertie comme une loi de la nature; et lorsque nous observerons de l'altération dans le mouvement d'un corps, nous supposerons qu'elle est due à l'action d'une cause étrangère.

Dans le mouvement uniforme, les espaces parcourus sont proportionnels aux temps; mais le temps employé à décrire un espace déterminé, est plus ou moins long, suivant la grandeur de la force motrice. Cette différence a fait naître l'idée de vîtesse qui, dans le mouvement uniforme, est le rapport de l'espace au temps employé à le parcourir. Pour ne pas comparer ensemble des quantités hétérogènes, telles que l'espace et le temps; on prend un intervalle de temps, la seconde, par exemple, pour unité de temps; on choisit pareillement une unité d'espace, telle que le mètre; et alors l'espace et le temps sont des nombres abstraits qui expriment combien ils renferment d'unités de leur espèce; on peut donc les comparer l'un à l'autre. La vîtesse devient ainsi le rapport de deux nombres abstraits, et son unité est la vîtesse d'un corps qui parcourt un mètre dans une seconde. En réduisant de cette manière, l'espace. le temps et la vîtesse, à des nombres abstraits; on voit que l'espace est égal au produit de la vîtesse par le temps qui conséquemment, est égal à l'espace divisé par la vîtesse.

La force n'étant connue que par l'espace qu'elle fait décrire dans un temps déterminé; il est naturel de prendre cet espace pour sa mesure. Mais cela suppose que plusieurs forces agissant à-la-fois et dans le même sens, sur un corps, lui feront parcourir durant une unité de temps, un espace égal à la somme des espaces que chacune d'elles eût fait parcourir séparément; ou, ce qui revient au même, que la force est proportionnelle à la vîtesse. C'est ce que nous ne pouvons pas savoir à priori, vu notre ignorance sur la nature de la force motrice; il faut donc encore sur cet objet, recourir à l'expérience; car tout ce qui n'est pas une suite nécessaire du peu de données que nous avons sur la nature des choses, n'est pour nous qu'un résultat de l'observation.

La force peut être exprimée par une infinité de fonctions de la vîtesse, qui n'impliquent pas contradiction. Il n'y en a point, par exemple, à la supposer proportionnelle au carré de la vîtesse. Dans cette hypothèse, il est facile de déterminer le mouvement

d'un point sollicité par un nombre quelconque de forces dont les vîtesses sont connues; car si l'on prend sur les directions de ces forces, à partir de leur point de concours, des droites pour représenter leurs vîtesses, et si l'on détermine sur ces mêmes directions, en partant du même point, de nouvelles droites qui soient entre elles, comme les carrés des premières; ces droites pourront représenter les forces elles-mêmes. En les composant ensuite par ce qui précède, on aura la direction de la résultante, ainsi que la droite qui l'exprime, et qui sera au carré de la vîtesse correspondante, comme la droite qui représente une des forces composantes, est au carré de sa vîtesse. On voit par là, comment on peut déterminer le mouvement d'un point, quelle que soit la fonction de la vîtesse qui exprime la force. Parmi toutes les fonctions mathématiquement possibles, examinons quelle est celle de la nature.

On observe sur la terre, qu'un corps sollicité par une force quelconque, se meut de la même manière, quel que soit l'angle que la direction de cette force, fait avec la direction du mouvement commun au corps et à la partie de la surface terrestre, à laquelle il répond. Une légère différence à cet égard, ferait varier très-sensiblement la durée des oscillations du pendule, suivant la position du plan vertical dans lequel il oscille; et l'expérience fait voir que dans tous les plans verticaux, cette durée est exactement la même. Dans un vaisseau dont le mouvement est uniforme, un mobile soumis à l'action d'un ressort, de la pesanteur, ou de toute autre force, se meut relativement aux parties du vaisseau, de la même manière, quelles que soient la vîtesse du vaisseau et sa direction. On peut donc établir comme une loi générale des mouvemens terrestres, que si dans un système de corps emportés d'un mouvement commun, on imprime à l'un d'eux, une force quelconque; son mouvement relatif ou apparent sera le même, quel que soit le mouvement général du système, et l'angle que fait sa direction avec celle de la force imprimée.

La proportionnalité de la force à la vîtesse, résulte de cette loi supposée rigoureuse; car si l'on conçoit deux corps mus sur une même droite avec des vîtesses égales, et qu'en imprimant à l'un d'eux, une force qui s'ajoute à la première, sa vîtesse relativement

à l'autre corps, soit la même que si les deux corps étaient primitivement en repos; il est visible que l'espace décrit par le corps en vertu de sa force primitive, et de celle qui lui est ajoutée, est alors égal à la somme des espaces que chacune d'elles eût fait décrire dans le même temps; ce qui suppose la force proportionnelle à la vîtesse.

Réciproquement, si la force est proportionnelle à la vîtesse, les mouvemens relatifs d'un système de corps animés de forces quel-conques, sont les mêmes, quel que soit leur mouvement commun; car ce mouvement décomposé en trois autres parallèles à trois axes fixes, ne fait qu'accroître d'une même quantité, les vîtesses partielles de chaque corps, parallèlement à ces axes; et comme la vîtesse relative ne dépend que de la différence de ces vîtesses partielles; elle est la même, quel que soit le mouvement commun à tous les corps. Il est donc impossible alors de juger du mouvement absolu d'un système dont on fait partie, par les apparences que l'on y observe. C'est ce qui caractérise cette loi dont l'ignorance a retardé la connaissance du vrai système du monde, par la difficulté de concevoir les mouvemens relatifs des projectiles, au-dessus de la terre emportée par un double mouvement de rotation sur elle-même, et de révolution autour du soleil.

Mais vu l'extrême petitesse des mouvemens les plus considérables que nous puissions imprimer aux corps, eu égard au mouvement qui les emporte avec la terre; il suffit, pour que les apparences d'un système de corps soient indépendantes de la direction de ce mouvement, qu'un petit accroissement dans la force dont la terre est animée, soit à l'accroissement correspondant de sa vîtesse, dans le rapport de ces quantités elles-mêmes. Ainsi, nos expériences prouvent seulement la réalité de cette proportion qui, si elle avait lieu, quelle que fût la vîtesse de la terre, donnerait la loi de la vîtesse proportionnelle à la force. Elle donnerait encore cette loi, si la fonction de la vîtesse, qui exprime la force, n'était composée que d'un seul terme. Il faudrait donc, si la vîtesse n'était pas proportionnelle à la force, supposer que dans la nature, la fonction de la vîtesse, qui exprime la force, est formée de plusieurs termes; ce qui est peu probable. Il faudrait supposer de plus, que la vîtesse de

la terre est exactement celle qui convient à la proportion précédente, ce qui est contre toute vraisemblance. D'ailleurs, la vîtesse de la terre, varie dans les diverses saisons de l'année: elle est d'un trentième environ plus grande en hiver, qu'en été. Cette variation est plus considérable encore, si, comme tout l'indique, le système solaire est en mouvement dans l'espace; car selon que ce mouvement progressif est contraire au mouvement terrestre, ou conspire avec lui, de grandes variations annuelles doivent en résulter dans le mouvement absolu de la terre; ce qui devrait altérer la proportion dont il s'agit, et le rapport de la force imprimée, à la vîtesse relative qu'elle produit; si cette proportion et ce rapport n'étaient pas indépendans de la vîtesse absolue.

Tous les phénomènes célestes viennent à l'appui de ces preuves. La vitesse de la lumière, déterminée par les éclipses des satellites de Jupiter, se compose avec celle de la terre, exactement comme dans la loi de la proportionnalité de la force à la vitesse; et tous les mouvemens du système solaire, calculés d'après cette loi, sont entièrement conformes aux observations.

Voilà donc deux lois du mouvement, savoir, la loi d'inertie et celle de la force proportionnelle à la vîtesse, qui sont données par l'observation. Elles sont les plus naturelles et les plus simples que l'on puisse imaginer, et sans doute, elles dérivent de la nature même de la matière; mais cette nature étant inconnue, ces lois ne sont pour nous, que des faits observés, les seuls, au reste, que la mécanique emprunte de l'expérience.

La vîtesse étant proportionnelle à la force, ces deux quantités peuvent être représentées l'une par l'autre; on aura donc par ce qui précède, la vîtesse d'un point sollicité par un nombre quel-conque de forces dont on connaît les directions et les vîtesses.

Si le point est sollicité par des forces agissant d'une manière continue; il décrira d'un mouvement sans cesse variable, une courbe dont la nature dépend des forces qui la font décrire. Pour la déterminer, il faut considérer la courbe dans ses élémens, voir comment ils naissent les uns des autres, et remonter de la loi d'accroissement des coordonnées, à leur expression finie. C'est précisément l'objet du calcul infinitésimal dont l'heureuse découverte

a procuré tant d'avantages à la mécanique; et l'on sent combient il est utile de perfectionner ce puissant instrument de l'esprit. humain.

Nous avons dans la pesanteur, un exemple journalier d'une force qui semble agir sans interruption. A la vérité, nous ignorons si ses actions successives sont séparées par des intervalles de temps, dont la durée est insensible; mais les phénomènes étant à très-peu près les mêmes, dans cette hypothèse et dans celle d'une action continue; les géomètres ont préféré celle-ci, comme étant plus commode et plus simple. Développons les lois de ces phénomènes.

La pesanteur paraît agir de la même manière sur les corps, dans l'état du repos et dans celui du mouvement. Au premier instant, un corps abandonné à son action, acquiert un degré de vîtesse, infiniment petit : un nouveau degré de vîtesse s'ajoute au premier, dans le second instant, et ainsi de suite; ensorte que la vîtesse.

augmente en raison du temps,

Si l'on imagine un triangle rectangle dont un des côtés représente le temps et croisse avec lui; l'autre côté pourra représenter la vîtesse. L'élément de la surface de ce triangle, étant égal au produit de l'élément du temps, par la vîtesse, il représentera l'élément de l'espace que la pesanteur fait décrire; cet espace sera ainsi représenté par la surface entière du triangle qui croissant comme le carré d'un de ses côtés, fait voir que dans le mouvement accéléré par la pesanteur, les vîtèsses augmentent comme les temps, et les hauteurs dont le corps tombe en partant du repos, croissent comme les carrés des temps ou des vîtesses. En exprimant donc par l'unité, l'espace dont un corps descend dans la première seconde; il descendra de quatre unités, en deux secondes; de neuf unités, en trois secondes, et ainsi du reste; ensorte qu'à chaque seconde, il décrira des espaces croissans comme les nombres impairs 1, 3, 5, 7, etc.

L'espace qu'un corps en vertu de la vîtesse acquise à la fin de sa chute, décrirait pendant un temps égal à sa durée, serait le produit de ce temps par sa vîtesse: ce produit est le double de la surface du triangle; ainsi le corps mu uniformément en vertu de sa vîtesse acquise, décrirait dans un temps égal à celui de sa chute, un espace double de celui qu'il a parcouru,

Le rapport de la vîtesse acquise, au temps, est constant pour une même force accélératrice : il augmente ou diminue, suivant que ces forces sont plus ou moins grandes; il peut donc servir à les exprimer. Le double de l'espace parcouru, étant le produit du temps par la vîtesse; la force accélératrice est égale à ce double espace divisé par le carré du temps. Elle est encore égale au carré de la vîtesse, divisé par ce double espace. Ces trois manières d'exprimer les forces accélératrices, sont utiles dans diverses circonstances : elles ne donnent pas les valeurs absolues de ces forces, mais seulement leurs rapports entre elles; et dans la mécanique, on n'a besoin que de ces rapports.

Sur un plan incliné, l'action de la pesanteur se décompose en deux autres; l'une perpendiculaire au plan, est détruite par sa résistance; l'autre parallèle au plan, est à la pesanteur primitive, comme la hauteur du plan est à sa longueur. Le mouvement est donc uniformément accéléré sur les plans inclinés; mais les vîtesses et les espaces parcourus, sont aux vîtesses et aux espaces parcourus dans le même temps, suivant la verticale, dans le rapport de la hauteur du plan à sa longueur. Il suit de là que toutes les cordes d'un cercle, qui aboutissent à l'une des extrémités de son diamètre vertical, sont décrites par l'action de la pesanteur, dans le même temps que son diamètre.

Un projectile lancé suivant une droite quelconque, s'en écarte sans cesse, en décrivant une courbe concave vers l'horizon, et dont cette droite est la première tangente. Son mouvement rapporté à cette droite par des lignes verticales, est uniforme; mais il s'accélère suivant ces verticales, conformément aux lois que nous venons d'exposer; en élevant donc de chaque point de la courbe, des verticales prolongées jusqu'à la première tangente, elles seront proportionnelles aux carrés des parties correspondantes de cette tangente, propriété qui caractérise la parabole. Si la force de projection est dirigée suivant la verticale elle-même, la parabole se confond alors avec elle; ainsi les formules du mouvement parabolique embrassent les mouvemens accélérés ou retardés dans la verticale.

Telles sont les lois de la chute des graves, découvertes par Galilée. Il nous semble aujourd'hui, qu'il était facile d'y parvenir; mais pnisqu'elles avaient échappé aux recherches des philosophes, malgré les phénomènes qui les reproduisaient sans cesse; il fallait un rare

génie, pour les démêler dans ces phénomènes.

On a vu dans de premier livre, qu'un point matériel suspendu à Rextrémité d'une droite sans masse, et fine à son autre extrémité, forme le pendule simple. Ce pendule écarté de la verticale, tend à y revenir par sa pesanteur, et oette tendance està très peuprés proportionnelle à cet écart, s'il est peu considérable. Imaginons deux pendules de même longueur, et partant au même instant avec des vîtesses très petites, de la situation verticale. Ils décriront au premier instant, des arcs proportionnels à ces vîtesses. Au commencement d'un second instant égal au premier, les vitesses seront retardées proportionnellement aux arcs décrits, et par conséquent aux vîtesses primitives; les arcs décrits dans cet instant, seront donc encore proportionnels à ces vîtesses. Il en sera de même des arcs décrits au troisième instant, au quatrième, etc. Ainsi à chaque instant, les witesses et les arcs mesurés depuis la verticale, seront proportionnels aux vîtesses primitives; les pendules arriverent donc au même moment, à l'état du repos. Ils reviendront ensuite vers la verticale, per un mouvement accéléré suivant les mêmes lois par lesquelles leur vîtesse avait été:retardée, et ils y parviendront au même instant, et avec leur vîtesse primitive. Ils oscilleront de la même manière, de l'autre côté de la verticale, et ils continueraient d'osciller à l'infini, sans les résistances qu'ils épreuvent. Il est visible que l'étendue de leurs oscillations est proportionnelle à leur vîtesse primitive; mais la durée de ces oscillations est la même, et par conséquent indépendante de leur grandeur. La force qui accélère ou retarde le pondule, n'étant pas exactement en raison de l'arc mesuré depuis la verticale; cet isochronisme n'est qu'approché relativement aux petites oscillations d'un corps pesant, mu dans un cercle. Il est rigoureux dans la courbe sur laquelle la pesanteur décomposée parallèlement à la tangente, est proportionnelle à l'arc compté du point le plus bas; ce qui donne immédiatement son équation différentielle. Huyghens à qui l'on doit l'application du pendule aux horloges, avait intérêt de connaître cette courbe, et la manière de la faire décrire au pendule. Il trouva qu'elle est une cycloïde placée

verticalement, ensorte que son sommet soit le point le plus bas; et que pour la faire décrire à un corps suspendu à l'extrémité d'un fil inextensible, il suffit de fixer l'autre extrémité, à l'origine commune de deux cycloïdes égales à celles que l'on veut faire décrire, et placées verticalement en sens contraire, de manière que le fil, en oscillant, enveloppe alternativement chacune de ces courbes. Quelque ingénieuses que soient ces recherches, l'expérience a fait préférer le pendulé circulaire, comme étant beaucoup plus simple, et d'une précision suffisante même à l'astronomie. Mais la théorie des développées, qu'elles ont fait naître, est devenue très importante par ses applications au système du monde:

La durée des escillations fort petites d'un pendule circulaire, est au temps qu'un corps pesant emploierait à tomber d'une hauteur égale au double de la longueur du pendule, comme la demi-circonférence est au diamètre. Ainsi le temps de la chute, le long d'un petit are terminé par un diamètre vertical, est au temps de la chute, le long de ce diamètre; ou ce qui revient au même, par la corde de l'arc; comme le quart de la circonférence est au diamètre; la droite menée entre deux points donnés, n'est donc pas la ligne de la plus vîte descente de l'un à l'autre. La recherche de cette ligne a excité la curiosité des géomètres; et ils ont trouvé qu'elle est une cycloïde dont l'origine est au point le plus élevé.

La longueur du pendule simple qui bat les secondes, est au double de la hauteur dont la pesanteur fait tomber les corps dans la première seconde de leur chute, comme le carré du diamètre, est au carré de la circonférence. Cette longueur pouvant être mesurée avec une grande précision; on aura, au moyen de ce théorème, le temps de la chute des corps, d'une hauteur déterminée, beaucoup plus exactement que par des expériences directes. On a vu dans le premier livre, que des expériences très-exactes ont donné la longueur du pendule à secondes à Paris, de om, 741887; d'où il résulte que la pesanteur y fait tomber les corps, de 3m,66107, dans la première seconde. Ce passage du mouvement d'oscillation, dont on peut observer avec une grande précision la durée, au mouvement rectiligne des graves, est une remarque ingénieuse dont on est encore redevable à Huyghens.

Digitized by Google

Les durées des oscillations fort petites des pendules de longueurs différentes, et animés par la même pesanteur, sont comme les racines carrées de ces longueurs. Si les pendules sont de même longueur, et animés de pesanteurs différentes; les durées des oscillations sont réciproques aux racines carrées des pesanteurs.

C'est au moyen de ces théorèmes, que l'on a déterminé la variation de la pesanteur, à la surface de la terre et au sommet des montagnes. Les observations du pendule, ont pareillement fait connaître que la pesanteur ne dépend ni de la surface, ni de la figure des corps, mais qu'elle pénètre leurs parties les plus intimes, et qu'elle tend à leur imprimer dans le même temps, des vîtesses égales. Pour s'en assurer, Newton a fait osciller un grand nombre de corps de même poids, et différens soit par la figure, soit par la matière, en les plaçant dans l'intérieur d'une même surface, afin que la résistance de l'air fût la même. Quelque précision qu'il ait apportée dans ses expériences, il n'a point remarqué de différences sensibles entre les longueurs du pendule simple à secondes, conclues des durées des oscillations de ces corps; d'où il suit que sans les résistances qu'ils éprouvent, leur vîtesse acquise par l'action de la pesanteur, serait la même en temps égal.

Nous avons encore dans le mouvement circulaire, l'exemple d'une force agissant d'une manière continue. Le mouvement de la matière abandonnée à elle-même, étant uniforme et rectiligne; il est clair qu'un corps mu sur une circonférence, tend sans cesse à s'éloigner du centre, par la tangente. L'effort qu'il fait pour cela, se nomme force centrifuge; et l'on nomme force centrale ou centripète, toute force dirigée vers un centre. Dans le mouvement circulaire, la force centrale est égale et directement contraire à la force centrifuge: elle tend sans cesse à rapprocher le corps, du centre de la circonférence; et dans un intervalle de temps, trèscourt, son effet est mesuré par le sinus verse du petit arc décrit.

On peut, au moyen de ce résultat, comparer à la pesanteur, la force centrifuge due au mouvement de rotation de la terre. A l'équateur, les corps décrivent en vertu de cette rotation, dans chaque seconde de temps, un arc de 40″,1095 de la circonférence de l'équateur terrestre. Le rayon de cet équateur étant 6376606^m à

fort peu près; le sinus verse de cet arc est de o^{m.},0126559. Pendant une seconde, la pesanteur fait tomber les corps à l'équateur, de 3^{m.},64930; ainsi la force centrale nécessaire pour retenir les corps à la surface de la terre, et par conséquent, la force centrifuge due à son mouvement de rotation est à la pesanteur à l'équateur, dans le rapport de l'unité à 288,4. La force centrifuge diminue la pesanteur, et les corps ne tombent à l'équateur, qu'en vertu de la différence de ces deux forces; en nommant donc gravité, la pesanteur entière qui aurait lieu sans la diminution qu'elle éprouve; la force centrifuge à l'équateur est à fort peu près \(\frac{1}{189}\) de la gravité. Si la rotation de la terre était dix-sept fois plus rapide; l'arc décrit dans une seconde à l'équateur, serait dix-sept fois plus grand, et son sinus verse serait 289 fois plus considérable; la force centrifuge serait donc alors égale à la gravité, et les corps cesseraient de peser sur la terre à l'équateur.

En général, l'expression d'une force accélératrice constante, qui agit toujours dans le même sens, est égale au double de l'espace qu'elle fait décrire, divisé par le carré du temps : toute force accélératrice, dans un intervalle de temps, très-court, peut être supposée constante et agir suivant la même direction; d'ailleurs, l'espace que la force centrale fait décrire dans le mouvement circulaire, est le sinus verse du petit arc décrit, et ce sinus est à très-peu près égal au carré de l'arc, divisé par le diamètre; l'expression de cette force est donc le carré de l'arc décrit, divisé par le carré du temps et par le rayon du cercle. L'arc divisé par le temps, est la vîtesse même du corps; la force centrale et la force centrifuge, sont donc égales au carré de la vîtesse, divisé par le rayon.

Rapprochons ce résultat, de celui que nous avons trouvé précédemment, et suivant lequel la pesanteur est égale au carré de la vîtesse acquise, divisé par le double de l'espace parcouru suivant la verticale; nous verrons que la force centrifuge est égale à la pesanteur, si la vîtesse du corps qui circule, est la même que celle acquise par un corps pesant qui toinberait d'une hauteur égale à la moitié du rayon de la circonférence décrite.

Les vitesses de plusieurs corps mus circulairement, sont égales

aux circonférences qu'elles décrivent, divisées par les temps de leurs révolutions: les circonférences sont comme les rayons; ainsi, les carrés des vîtesses sont comme les carrés des rayons, divisés par les carrés de ces temps. Les forces centrifuges sont donc entre elles comme les rayons des circonférences, divisés par les carrés des temps des révolutions. Il suit de la, que sur divers parallèles terrestres, la force centrifuge due au mouvement de rotation de la terre, est proportionnelle aux rayons de ces parallèles.

Ces beaux théorèmes découverts par Huyghens, ont conduit Newton à la théorie générale du mouvement dans les courbes, et à la loi de la pesanteur universelle.

Un corps qui décrit une courbe que conque, tend à s'en écarter par la tangente; or on peut toujours imaginer un cercle qui passe par deux élémens contigus de la courbe, et que l'on nomme cercle osculateur: dans deux instans consécutifs, le corps est mu sur la circonférence de ce cercle; sa force centrifuge est donc égale au carré de sa vîtesse, divisé par le rayon du cercle osculateur; mais la position et la grandeur de ce cercle, varient sans cesse.

Si la courbe est décrite en vertu d'une force dirigée vers un point fixe; on peut décomposer cette force en deux, l'une suivant le rayon osculateur, l'autre suivant l'élément de la courbe. La première fait équilibre à la force centrifuge : la seconde augmente ou diminue la vîtesse du corps; cette vîtesse est donc continuellement variable. La selle est toujours telle, que les aires décrites par le rayon vecteur, autour de l'origine de la force, sont proportionnelles aux temps. Réciproquement, si les aires tracées par le rayon vecteur autour d'un point fixe, croissent comme les temps; la force qui les fait décrire, est constamment dirigée vers ce points. Ces propositions fondamentales dans la théorie du système du monde, se démontrent aisément de cette manière.

La force accélératrice peut être supposée n'agir qu'au commencement de chaque instant pendant lequel le mouvement du corps est uniforme : le rayon vecteur trace alors un petit triangle. Si la force cessait d'agir dans l'instant suivant, le rayon vecteur tracerait dans ce nouvel instant, un nouveau triangle égal au premier; puisque ces deux triangles ayant leur sommet au point fixe origine de la force, leurs bases situées sur une même droite seraient égales, comme étant décrites avec la même vîtesse, pendant des instans que nous supposons égaux. Mais au commencement du nouvel instant, la force accélératrice se combine avec la force tangentielle du corps, et fait décrire la diagonale du parallélogramme dont les côtés représentent ces forces. Le triangle que le rayon vecteur décrit en vertu de cette force combinée, est égal à celui qu'il cett décrit sans l'action de la force accélératifice; car ces deux triangles ont pour base commune, le rayon vecteur de la fin du premier instant, et leurs sommets sont sur une droite parallèle à cette base; l'aire tracée par le rayon vecteur est donc égale, dans deux instans consécutifs égaux; et par conséquent le secteur décrit par ce rayon, croît comme le nombre de ces instans, ou comme les temps. Il est visible que cela n'a lieu qu'antent que la force accélératrice est dirigée vers le point fixe; autrement, les triangles que nous venons de considérer, n'auraient pas même hauteur. Ainsi, la proportionnalité des aires aux temps, démontre que la force accélératrice est dirigée constamment vers l'origine du rayon vecteur.

Dans ce cas, ai l'on imagine un très-petit secteur décrit pendant un intervalle de temps, fort court; que de la première extrémité de l'arc de ce secteur, on mêne une tangente à la courbe, et que l'on prolonge jusqu'à cette tangente, le rayon mené de l'origine de la force, à l'autre extrémité de l'arc.; la partie de ce rayon, interceptée entre la courbe et la tangente, sera visiblement l'espace que la torce centrale a fait décrire. En divisant le double de cet espace, par le carré du temps, on aura l'expression de la force; or le secteur est proportionnel au temps ; la force centrale est donc comme la partie du rayon verteur, interceptée entre la courbe et la tangente, divisée par le carré du secteur. A la rigueur, la force centrale dans les divers points de la courbe, n'est pas proportionnelle à ces quotiens; mais elle approche d'autant plus de l'être, que les secteurs sont plus petits, ensorte qu'elle est exactement proportionnelle à la limite de ces quotiens. L'analyse différentielle donne cette limite, en fonction du rayon vecteur, lorsque la nature de la courbe est connue; et alors on a la fonction de la distance, à laquelle la force centrale est proportionnelle.

Si la loi de la force est donnée, la recherche de la courbe qu'elle fait décrire, présente plus de difficulté. Mais quelles que soient les forces dont le corps toujours supposé libre est animé, on déterminera facilement de la manière suivante, les équations différentielles de son mouvement. Imaginons trois axes fixes perpendiculaires entre eux; la position du corps à un instant quelconque, sera déterminée par trois coordonnées parallèles à ces axes. En décomposant chacune des forces qui agissent sur le point, en trois autres dirigées parallèlement aux mêmes axes; le produit de la résultante de toutes les forces parallèles à l'une des coordonnées, par l'élément du temps pendant lequel elle agit, exprimera l'accroissement de la vîtesse du corps, parallèlement à cette coordonnée; or cette vîtesse peut être supposée égale à l'élément de la coordonnée, divisé par l'élément du temps; la différentielle du quotient de cette division, est donc égale au produit précédent. La considération des deux autres coordonnées fournit deux égalités semblables; ainsi la détermination du mouvement du corps, devient une recherche de pure analyse, qui se réduit à l'intégration de ces équations différentielles.

En général, l'élément du temps étant supposé constant, la différence seconde de chaque coordonnée, divisée par le carré de cet élément, représente une force qui, appliquée en sens contraire au point, ferait équilibre à la force qui le sollicite suivant cette coordonnée. En multipliant la différence de ces forces, par la variation arbitraire de la coordonnée, et ajoutant les trois produits semblables relatifs aux trois coordonnées; leur somme sera nulle par la condition de l'équilibre. Si le point est libre, les variations des trois coordonnées seront toutes arbitraires, et en égalant à zéro, le coefficient de chacune d'elles, on aura les trois équations différentielles du mouvement du point. Mais si le point n'est pas libre, on aura entre les trois coordonnées, une ou deux relations qui donneront un pareil nombre d'équations entre leurs variations arbitraires. En éliminant donc à leur moyen, autant de ces variations, on égalera les coefficiens des variations restantes, à zéro; et l'on aura les équations différentielles du mouvement, équations qui, combinées avec les relations des coordonnées, détermineront pour un instant quelconque, la position du point,

L'intégration de ces équations est facile, quand la force est dirigée vers un centre fixe; mais souvent, la nature des forces la rend impossible. Cependant, la considération des équations différentielles, conduit à quelques principes intéressans de mécanique, tels que le suivant. La différentielle du carré de la vîtesse d'un point soumis à l'action de forces accélératrices, est égale au double de la somme des produits de chaque force, par le petit espace dont le point s'avance suivant la direction de cette force. Il est aisé d'en conclure que la vîtesse acquise par un corps pesant, le long d'une ligne ou d'une surface courbe, est la même que s'il tombait verticalement de la même hauteur.

Plusieurs philosophes, frappés de l'ordre qui règne dans la nature, et de la fécondité de ses moyens dans la production des phénomènes, ont pensé qu'elle parvient toujours à son but par les voies les plus simples. En étendant cette manière de voir, à la mécanique; ils ont cherché l'économie que la nature avait eue pour objet, dans l'emploi des forces et du temps. Ptolémée avait reconnu que la lumière réfléchie parvient d'un point à un autre, par le chemin le plus court, et par conséquent, dans le moins de temps possible, en supposant la vîtesse du rayon lumineux, toujours la même. Fermat, l'un des plus beaux génies dont la France s'honore, généralisa ce principe, en l'étendant à la réfraction de la lumière. Il supposa donc qu'elle parvient d'un point pris au dehors d'un milieu diaphane, à un point intérieur, dans le temps le plus court; regardant ensuite comme très-vraisemblable, que sa vîtesse devait être plus petite dans ce milieu, que dans le vide; il chercha dans ces hypothèses, la loi de la réfraction de la lumière. En appliquant à ce problème, sa belle méthode de maximis et de minimis, que l'on doit considérer comme le véritable germe du calcul différentiel; il trouva conformément à l'expérience, que les sinus d'incidence et de réfraction, devaient être dans un rapport constant, plus grand que l'unité. La manière heureuse dont Newton a déduit ce rapport, de l'attraction des milieux, fit voir à Maupertuis, que la vîtesse de la lumière augmente dans les milieux diaphanes, et qu'ainsi ce n'est point, comme Fermat le prétendait, la somme des quotiens des espaces décrits dans le vide et dans le milieu, et divisés par les '

vîtesses correspondantes, mais la somme des produits de ces mantités, qui doit être un minimum. Euler étendit cette supposition. aux mouvemens variables à chaque instant; et il prouva par divers exemples, que parmi toutes les courbes qu'un corps peut décrire en allant d'un point à un autre, il choisit toujours celle dans laquelle l'intégrale du produit de sa masse par sa vîtesse et par l'élèment de la courbe, est un minimum. Ainsi la vîtesse d'un point mu dans une surface courbe et qui n'est sollicité par aucane force, étant constante; il parvient d'un point à un autre. par la ligne la plus courte sur cette surface. On a nommé l'intégrale précédente, action d'un corps; et la réunion des intégrales semblables, relatives à chaque corps d'un système, a été nommée action du système. Euler établit donc que cette action est toujours un minimum, ensorte que l'économie de la nature consiste à l'épargner: c'est là ce qui constitue le principe de la moindre action, dont on doit regarder Euler, comme le véritable inventeur, et que Lagrange ensuite, a dérivé des lois primordiales du mouvement. Ce principe n'est au fond, qu'un résultat curieux de ces Iois qui, comme on l'a vu, sont les plus naturelles et les plus simples que l'on puisse imaginer, et qui par là, semblont découler de l'essence même de la matière. Il convient à toutes les relations mathématiquement possibles entre la force et la vîtesse, pourvu que Ton substitue dans ce principe, au lieu de la vitesse, la fonction de la vîtesse, par laquelle la force est exprimée. Le principe de la moindre action ne doit donc point être érigé en cause finale; et doin d'avoir donné naissance aux lois du mouvement, il n'a pas même contribué à leur découverte, sans laquelle on disputerait encore sur ce qu'il faut entendre par la moindre action de la nature.

CHAPITRE III.

De l'équilibre d'un système de corps.

Le cas le plus simple de l'équilibre de plusieurs corps, est celui de deux points matériels qui se rencontrent avec des vîtesses égales et directement contraires. Leur impénétrabilité mutuelle, propriété de la matière, en vertu de laquelle deux corps ne peuvent pas occuper le même lieu au même instant, anéantit évidemment leurs vîtesses et les réduit à l'état du repos. Mais si deux corps de masses différentes viennent à se choquer avec des vîtesses opposées, quel est le rapport des vîtesses aux masses, dans le cas de l'équilibre? Pour résoudre ce problème, imaginous un système de points. matériels contigus, rangés sur une même droite, et animés d'une vîtesse commune, dans sa direction : concevous pareillement un second système de points matériels contigus, disposés sur la même droite, et animés d'une vitesse commune et contraire à la précédente, de manière que les deux systèmes se choquent mutuellement en se faisant équilibre. Il est clair que si le premier système n'était composé que d'un seul point matériel, chaque point du second système éteindrait dans le point chaquant, une partie de sa vîtesse, égale à la vîtesse de ce système; la vîtesse du point choquant, doit donc être dans le cas de l'équilibre, égale au produit de la vîtesse du second système, par le nombre de ses points, et l'on peut substituer au premier système, un seul point animé d'une vîtesse égale à ce produit. On peut semblablement substituer au second système, un point matériel animé d'une vîtesse égale au produit de la vîtesse du premier système, par le nombre de ses points. Ainsi, au lieu des deux systèmes, on aura deux points qui se feront équilibre avec des vîtesses contraires dont l'une sera le produit de la vîtesse du premier système par le nombre de ses points, et dont l'autre sera le produit de la vîtesse des points du second système, par leur nombre; ces produits doivent donc être égaux dans le cas de l'équilibre.

La masse d'un corps est la somme de ses points matériels. On nomme quantité de mouvement, le produit de la masse par la vitesse : c'est aussi ce que l'on entend par la force d'un corps. Pour l'équilibre de deux corps ou de deux systèmes de points matériels qui se choquent en sens contraires, les quantités de mouvement ou les forces opposées doivent être égales, et par conséquent, les vitesses doivent être réciproques aux masses.

Deux points matériels ne peuvent évidemment agir l'un sur l'autre; que suivant la droite qui les joint: l'action que le premier exerce sur le second, lui communique une certaine quantité de mouvement; or on peut avant l'action, concevoir le second corps sollicité par cette quantité et par une autre égale et directement opposée; l'action du premier corps se réduit ainsi à détruire cette dernière quantité de mouvement; mais pour cela, il doit employer une quantité de mouvement égale et contraire, qui sera détruite. On voit donc généralement, que dans l'action mutuelle des corps, la réaction est toujours égale et contraire à l'action. On voit encore que cette égalité ne suppose point une force particulière dans la matière : elle résulte de ce qu'un corps ne peut acquérir de mouvement, par l'action d'un autre corps, sans l'en dépouiller; de même qu'un vase se remplit aux dépens d'un vase plein qui communique avec luit

L'égalité de l'action à la réaction, se manifeste dans toutes les actions de la nature : le fer attire l'aimant comme il en est attiré : on observe la même chose dans les attractions et dans les répulsions électriques, et même dans le développement des forces animales; car quel que soit le principe moteur de l'homme et des animaux, il est constant qu'ils reçoivent par la réaction de la matière, une force égale et contraire à celle qu'ils lui communiquent, et qu'ainsi sous ce rapport, ils sont assujétis aux mêmes lois que les êtres inanimés.

La réciprocité des vîtesses aux masses, dans le cas de l'équilibre, sert à déterminer le rapport des masses des différens corps. Celles des corps homogènes sont proportionnelles à leurs volumes que la géométrie apprend à mesurer. Mais tous les corps ne sont pas de

même nature, et les différences qui existent, soit dans leurs molécules intégrantes, soit dans le nombre et la grandeur des intervalles ou pores qui séparent ces molécules, en apportent de très-grandes entre leurs masses renfermées sous le même volume. La géométrie devient alors insuffisante pour déterminer le rapport de ces masses, et il est indispensable de recourir à la mécanique.

Si l'on imagine deux globes de différentes matières, et que l'on fasse varier leurs diamètres, jusqu'à ce qu'en les animant de vîtesses égales et directement contraires, ils se fassent équilibre; on sera sûr qu'ils renfermeront le même nombre de points matériels, et par conséquent, des masses égales. On aura donc ainsi le rapport des volumes de ces substances à égalité de masse; ensuite, à l'aide de la géométrie, on en conclura le rapport des masses de deux volumes quelconques des mêmes substances. Mais cette méthode serait d'un usage très-pénible dans les comparaisons nombreuses qu'exigent à chaque instant, les besoins du commerce. Heureusement, la nature nous offre dans la pesanteur des corps, un moyen très-simple de comparer leurs masses.

On a vu dans le chapitre précédent, que chaque point matériel dans le même lieu de la terre, tend à se mouvoir avec la même vîtesse par l'action de la pesanteur : la somme de ces tendances est ce qui constitue le poids d'un corps; ainsi les poids sont proportionnels aux masses. Il suit de là que si deux corps suspendus aux extrémités d'un fil qui passe sur une poulie, se font équilibre lorsque les deux parties du fil sont égales de chaque côté de la poulie; les masses de ces corps sont égales, puisque tendant à se mouvoir avec la même vîtesse par l'action de la pesanteur, elles agissent l'une sur l'autre, comme si elles se choquaient avec des vîtesses égales et directement contraires. On peut encore mettre les deux corps en équilibre, au moyen d'une balance dont les bras et les bassins sont parfaitement égaux, et alors on sera sûr de l'égalité de leurs masses. On aura ainsi le rapport des masses de différens corps, au moyen d'une balance exacte et sensible, et d'un grand nombre de petits poids égaux; en déterminant le nombre de ces poids, nécessaire pour tenir ces masses en équilibre.

La densité d'un corps dépend du nombre de ses points matériels

renfermés sous un volume donné; elle est donc proportionnelle au rapport de la masse au volume. Une substance qui n'aurait point de pores, aurait la plus grande densité possible : en lui comparant la densité des autres corps, on aurait la quantité de matière qu'ils renferment. Mais ne connaissant point de substances semblables, nous ne pouvons avoir que les densités relatives des corps. Ces densités sont en raison des poids sous un même volume, puisque les poids sont proportionnels aux masses : en prenant ainsi pour unité, la densité d'une substance quelconque, à une température constante, par exemple, le maximum de densité de l'eau distillée; la densité d'un corps sera le rapport de son poids à celui d'un pareil volume d'eau réduite à son maximum. Ce rapport est ce que l'on nomme pesanteur spécifique.

Tout cela semble supposer que la matière est homogène, et que les corps ne différent que par la figure et la grandeur de leurs pores et de leurs molécules intégrantes. Il est cependant possible qu'il y ait des différences essentielles dans la nature même de ces molécules; et il ne répugne point au peu de notions que nous avons de la matière, de supposer l'espace céleste plein d'un fluide dénué de pores, et cependant tel qu'il n'oppose qu'une résistance insensible, aux mouvemens planétaires. On pourrait ainsi concilier l'inaltérabilité de ces mouvemens, prouvée par les phénomènes, avec l'opinion de ceux qui regardent le vide comme impossible. Mais cela est indifférent à la mécanique qui ne considère dans les corps que l'étendue et le mouvement. On peut alors sans craindre aucune streur, admettre l'homogénéité des élémens de la matière; pourvu que l'on entende par masses égales, des masses qui, animées de vîtesses égales et directement contraires, se font équilibre.

Dans la théorie de l'équilibre et du mouvement des corps, on fait abstraction du nombre et de la figure des pores dont ils sont parsemés. On peut avoir égard à la différence de leurs densités respectives, en les supposant formés de points matériels plus ou moins denses, parfaitement libres dans les fluides, unis entre eux par des droites sans masse, inflexibles dans les corps durs, flexibles et extensibles dans les corps élastiques et mous. Il est clair que dans ces suppositions, les corps offriraient les apparences qu'ils nous présentent.

Les conditions de l'équilibre d'un système de corps, peuvent toujours être déterminées par la loi de la composition des forces, exposée dans le premier chapitre de ce livre. Car on peut concevoir la force dont chaque point matériel est animé, appliquée au point de sa direction, où vont concourir les forces qui la détruisent, ou qui, en se composant avec elle, forment une résultante qui, dans le cas de l'équilibre, est anéantie par les points fixes du système. Considérons, par exemple, deux points matériels attachés aux extrémités d'un levier inflexible; et supposons ces points sollicités par des forces dont les directions soient dans un plan passant par le levier. En concevant ces forces réunies au point de concours de leurs directions, leur résultante doit, pour l'équilibre, passer par le point d'appui qui peut seul la détruire; et suivant la loi de la composition des forces, les deux composantes doivent être alors réciproques aux perpendiculaires menées du point d'appui, sur ieurs directions.

Si l'on imagine deux corps pesans attachés aux extrémités d'un levier inflexible, dont la masse soit supposée infiniment petite par rapport à celle des corps, on pourra concevoir les directions parallèles de la pesanteur, réunies à une distance infinie : dans ce cas, les forces dont chaque corps pesant est animé, ou, ce qui revient au même, leurs poids doivent pour l'équilibre, être réciproques aux perpendiculaires menées du point d'appui, sur les directions de ces forces : ces perpendiculaires sont proportionnelles aux bras du levier; ainsi les poids de deux corps en équilibre sont réciproques aux bras du levier auquel ils sont attachés.

Un très-petit poids peut donc au moyen du levier et des machines qui s'y rapportent, faire équilibre à un poids très-considérable, et l'on peut de cette manière, soulever un énorme fardeau, avec un léger effort; mais il faut pour cela, que le bras du levier auquel la puissance est attachée, soit fort long par rapport à celui qui soulève le fardeau, et que la puissance parcoure un grand espace, pour élever le fardeau à une petite hauteur. Alors on perd en temps, ce que l'on gagne en force, et c'est ce qui a lieu généralement dans les machines. Mais souvent on peut disposer du temps à volonté, tandis que l'on ne peut employer qu'une force limitée. Dans d'autres

circonstances où il faut se procurer une grande vîtesse, on peut y parvenir au moyen du levier, en appliquant la puissance au bras le plus court. C'est dans la possibilité d'augmenter suivant les besoins, la masse ou la vîtesse des corps à mouvoir, que consiste le principal avantage des machines.

La considération du levier a fait naître l'idée des momens. On nomme moment d'une force, pour faire tourner le système autour d'un point, le produit de cette force par la distance du point à sa direction. Ainsi, dans le cas de l'équilibre d'un levier aux extrémités duquel deux forces sont appliquées, les momens de ces forces par rapport au point d'appui, doivent être égaux et contraires, ou, ce qui revient au même, la somme des momens doit être nulle relativement à ce point.

La projection d'une force sur un plan mené par un point fixe, multipliée par la distance du point à cette projection, est ce que l'on nomme moment de la force pour faire tourner le système autour de l'axe qui passant par le point fixe, est perpendiculaire au plan,

Le moment de la résultante d'un nombre quelconque de forces, par rapport à un point ou à un axe quelconque, est égal à la somme des momens semblables des forces composantes.

Les forces parallèles pouvant être supposées se réunir à une distance infinie, elles sont réductibles à une résultante égale à leur somme et qui leur est parallèle; en décomposant donc chaque force d'un système de corps, en deux, l'une située dans un plan, l'autre perpendiculaire à ce plan; toutes les forces situées dans le plan, seront réductibles à une seule, ainsi que toutes les forces perpendiculaires au plan. Il existe toujours un plan passant par le point fixe, et tel que la résultante des forces qui lui sont perpendiculaires, est nulle ou passe par ce point : dans ces deux cas, le moment de cette résultante est nul relativement aux axes qui ont ce point pour origine, et le moment des forces du système par rapport à ces axes, se réduit au moment de la résultante située dans le plan dont il s'agit, L'axe autour duquel ce moment est un maximum, est celui qui est perpendiculaire à ce plan, et le moment des forces du système, relatif à un axe qui, passant par le point fixe, forme un angle quelconque avec l'axe du plus grand moment, est égal au

plus grand moment du système, multiplié par le cosinus de cet angle; ensorte que ce moment est nul pour tous les axes situés dans le plan auquel l'axe du plus grand moment est perpendiculaire.

La somme des carrés des cosinus des angles formés par l'axe du plus grand moment, et par trois axes quelconques perpendiculaires entre eux et passant par le point fixe, étant égale à l'unité; les carrés des trois sommes de momens des forces, relativement à ces axes, sont égaux au carré du plus grand moment.

Pour l'équilibre d'un système de corps liés invariablement entre eux et pouvant se mouvoir autour d'un point fixe; la somme des momens des forces doit être nulle par rapport à un axe quelconque passant par ce point. Il suit de ce qui précède, que cela aura lieu généralement, si cette somme est nulle relativement à trois axes fixes perpendiculaires entre eux. S'il n'y a pas de point fixe dans le système; il faut de plus pour l'équilibre, que les trois sommes des forces décomposées parallèlement à ces axes, soient nulles séparément.

Considérons un système de points pesans attachés fixement ensemble, et rapportés à trois plans perpendiculaires entre eux et liés au système. En décomposant l'action de la pesanteur, parallèlement aux intersections de ces plans; toutes les forces parallèles au même plan, peuvent se réduire à une seule résultante parallèle à ce plan, et égale à leur somme. Les trois résultantes relatives aux trois plans doivent concourir au même point; puisque les actions de la pesanteur sur les divers points du système, étant parallèles, elles ont une résultante unique que l'on obtient en composant d'abord deux de ces forces; ensuite leur résultante, avec une troisième; la résultante des trois forces avec une quatrième, et ainsi du reste. La situation de ce point de concours, par rapport au système, est indépendante de l'inclinaison des plans sur la direction de la pesanteur; car une inclinaison plus ou moins grande ne fait que changer les valeurs des trois résultantes partielles, sans altérer leur position relative aux plans; en supposant donc ce point, fixe; tous les efforts des poids du système seront anéantis, dans toutes les positions qu'il peut prendre en tournant autour de ce point que l'on a nommé par cette raison, centre de gravité du système.

Concevons la position de ce centre, et celle des divers points du système, déterminées par des coordonnées parallèles à trois axes perpendiculaires entre eux. Les actions de la pesanteur étant égales et parallèles, et la résultante de ces actions sur le système, passant dans toutes ses positions, par son centre de gravité; si l'on suppose cette résultante successivement parallèle à chacun des trois axes; l'égalité du moment de la résultante, à la somme des momens des composantes, donne l'une quelconque des coordonnées de ce centre, multipliée par la masse entière du système, égale à la somme des produits de la masse de chaque point, par sa coordonnée correspondante. Ainsi la détermination du centre de gravité, dont la pesanteur a fait naître l'idée, en est indépendante. La considération de ce centre, étendue à un système de corps pesans ou non pesans, libres ou liés entre eux d'une manière quelconque, est très-utile dans la mécanique.

En généralisant le théorème que nous avons donné à la fin du premier chapitre, sur l'équilibre d'un point; on est conduit au théorème suivant qui renserme de la manière la plus générale, les conditions de l'équilibre d'un système de points matériels animés par des forces quelconques.

Si l'on change infiniment peu la position du système, d'une manière compatible avec la liaison de ses parties; chaque point matériel s'avancera dans la direction de la force qui le sollicite, d'une quantité égale à la partie de cette direction, comprise entre la première position du point, et la perpendiculaire abaissée de la seconde position du point, sur cette direction. Cela posé : dans l'état d'équilibre, la somme des produits de chaque force par la quantité dont le point auquel elle est appliquée, s'avance dans sa direction, est nulle; et réciproquement, si cette somme est nulle, quelle que soit la variation du système, il est en *équilibre*. C'est en cela que consiste le principe des vîtesses virtuelles, principe dont on est redevable à Jean Bernoulli. Mais pour en faire usage, il faut observer de prendre négativement, les produits que nous venons d'indiquer, relatifs aux points qui, dans le changement de position du système, s'avancent en sens contraire de la direction de leurs forces: il faut se rappeler encore, que la force est le

produit de la masse d'un point matériel, par la vîtesse qu'elle lui ferait prendre, s'il était libre.

En concevant la position de chaque point du système, déterminée par trois coordonnées rectangles; la somme des produits de chaque force, par la quantité dont le point qu'elle sollicite, s'avance dans sa direction, lorsqu'on fait varier infiniment peu le système, sera exprimée par une fonction linéaire des variations des coordonnées de ses différens points: ces variations ont entre elles, des rapports résultans de la liaison des parties du système; en réduisant donc au moyen de ces rapports, les variations arbitraires, au plus petit nombre possible, dans la somme précédente qui doit être nulle pour l'équilibre; il faudra pour qu'il ait lieu dans tous les sens, égaler séparément à zéro, le coefficient de chacune des variations restantes, ce qui donnera autant d'équations, qu'il y aura de ces variations arbitraires. Ces équations réunies à celles que donne la liaison des parties du système, renfermeront toutes les conditions de son équilibre.

Il existe deux états d'équilibre, très-distincts. Dans l'un, si l'on trouble un peu l'équilibre, tous les corps du système ne font que de petites oscillations autour de leur position primitive; et alors, l'équilibre est ferme ou stable. Cette stabilité est absolue, si elle a lieu quelles que soient les oscillations du système : elle n'est que relative, si elle n'a lieu que par rapport aux oscillations d'une certaine espèce. Dans l'autre état d'équilibre, les corps s'éloignent de plus en plus de leur position primitive, lorsqu'on les en écarte. On aura une juste idée de ces deux états, en considérant une ellipse placée verticalement sur un plan horizontal. Si l'ellipse est en équilibre sur son petit axe; il est clair qu'en l'écartant un peu de cette situation, par un petit mouvement sur elle-même, elle tendà y revenir en faisant des oscillations que les frottemens et la résistance de l'air auront bientôt anéanties. Mais si l'ellipse est en équilibre sur son grand axe; une fois écartée de cette situation, elle tend à s'en éloigner davantage, et finit par se renverser sur son petit axe. La stabilité de l'équilibre dépend donc de la nature des petites oscillations que le système troublé d'une manière quelconque, fait autour de cet état. Pour déterminer généralement de quelle manière les

divers états d'équilibre stable ou non stable se succèdent, considérons une courbe rentrante placée verticalement dans une situation d'équilibre stable. Dérangée un peu de cet état, elle tend à y revenir: cette tendance varie à mesure que l'écartement augmente, et lorsqu'elle devient nulle, la courbe se retrouve dans une situation nouvelle d'équilibre, mais qui n'est point stable, puisque la courbe avant d'y arriver, tendait encore vers son premier état. Au-delà de cette dernière situation, la tendance vers le premier état et par conséquent vers le second, devient négative jusqu'à ce qu'elle redevienne encore nulle; et alors, la courbe est dans une situation d'équilibre stable. En continuant ainsi, on voit que les états d'équilibre stable et non stable, se succèdent alternativement, comme les maxima et les minima des ordonnées dans les courbes. Il est facile d'étendre le même raisonnement, aux divers états d'équilibre d'un système de corps.

CHAPITRE IV.

De l'équilibre des fluides.

La propriété caractéristique des fluides, soit élastiques, soit incompressibles, est l'extrême facilité avec laquelle chacune de leurs molécules obéit à la plus légère pression qu'elle éprouve d'un côté plutôt que d'un autre. Nous allons donc établir sur cette propriété, les lois de l'équilibre des fluides, en les considérant comme formés d'un nombre infini de molécules parfaitement mobiles entre elles.

Il suit d'abord de cette mobilité, que la force dont une molécule de la surface libre d'un fluide est animée, doit être perpendiculaire à cette surface; car si elle lui était inclinée, en la décomposant en deux autres, l'une perpendiculaire, et l'autre parallèle à cette surface, la molécule glisserait en vertu de cette dernière force; la pesanteur est donc perpendiculaire à la surface des eaux stagnantes, qui par conséquent est horizontale. Par la même raison, la pression que chaque molécule fluide exerce contre une surface, doit lui être perpendiculaire.

Chaque molécule intérieure d'une masse fluide, éprouve une pression qui dans l'atmosphère, est mesurée par la hauteur du baromètre, et qui peut l'être d'une manière semblable pour tout autre fluide. En considérant la molécule, comme un prisme rectangle infiniment petit; la pression du fluide environnant sera perpendiculaire aux faces de ce prisme qui tendra par conséquent, à se mouvoir perpendiculairement à chaque face, en vertu de la différence des pressions que le fluide exerce sur les deux faces opposées. De

ces différences de pressions, résultent trois forces perpendiculaires entre elles, qu'il faut combiner avec les autres forces qui sollicitent la molécule. Il est facile d'en conclure que la différentielle de la pression est, dans l'état d'équilibre, égale à la densité de la molécule fluide, multipliée par la somme des produits de chaque force par l'élément de sa direction; cette somme est donc une différence exacte, si le fluide est incompressible et homogène; résultat important auquel Clairaut est parvenu le premier, dans son bel ouvrage sur la Figure de la Terre.

Quand les forces sont produites par des attractions qui sont toujours une fonction de la distance aux centres attirans; le produit de chaque force par l'élément de sa direction, est une différentielle exacte; la densité de la molécule fluide doit donc être alors une fonction de la pression, puisque la différentielle de la pression divisée par cette densité, est égale à une différence exacte. Ainsi toutes les couches de la masse fluide dans lesquelles la pression est constante, sont de même densité dans toute leur étendue. La résultante de toutes les forces qui animent chaque molécule de la surface de ces couches, est perpendiculaire à cette surface sur laquelle la molécule glisserait, si cette résultante lui était inclinée. Ces couches ont été nommées par cette raison, couches de niveau.

La densité d'une molécule d'air atmosphérique, est une fonction de la pression et de la chaleur : sa pesanteur est à très-peu près une fonction de sa hauteur au-dessus de la surface de la terre. Si sa chaleur était pareillement une fonction de cette hauteur, l'équation de l'équilibre de l'atmosphère serait une équation différentielle entre la pression et la hauteur; et par conséquent l'équilibre serait toujours possible. Mais dans la nature, la chaleur des diverses parties de l'atmosphère, dépend encore, de la latitude, de la présence du soleil, et de mille autres causes variables ou constantes qui doivent exciter dans cette grande masse fluide, des mouvemens souvent très-considérables.

En vertu de la mobilité de ses parties, un fluide pesant peut exercer une pression beaucoup plus grande que son poids: un filet d'eau, par exemple, qui se termine par une large surface horizontale, presse autant la base sur laquelle il repose, qu'un cylindre d'eau de même base et de même hauteur. Pour rendre sensible, la vérité de ce paradoxe, imaginons un vase cylindrique fixe, et dont le fond horizontal soit mobile: supposons ce vase rempli d'eau, et son fond maintenu en équilibre par une force égale et contraire à la pression qu'il éprouve. Il est clair que l'équilibre subsisterait toujours, dans le cas où une partie de l'eau viendrait à se consolider et à s'unir aux parois du vase; car l'équilibre d'un système de corps n'est point troublé, en supposant que dans cet état, plusieurs d'entre eux viennent à s'unir, ou à s'attacher à des points fixes. On peut donc former ainsi une infinité de vases de figures différentes, qui tous auront même fond et même hauteur que le vase cylindrique, et dans lesquels l'eau exercera la même pression sur le fond mobile.

En général, lorsqu'un fluide n'agit que par son poids, la pression qu'il exerce contre une surface, équivaut au poids d'un prisme de ce fluide, dont la base est égale à la surface pressée, et dont la hauteur est la distance du centre de gravité de cette surface, au plan de niveau du fluide.

Un corps plongé dans un fluide, y perd une partie de son poids, égale au poids du volume de fluide déplacé; car avant l'immersion, le fluide environnant faisait équilibre au poids de ce volume de fluide qui, sans troubler l'équilibre, pouvait être supposé former une masse solide; la résultante de toutes les actions du fluide sur cette masse, doit donc faire équilibre à son poids, et passer par son centre de gravité; or il est clair que ces actions sont les mêmes sur le corps, qui en occupe la place; l'action du fluide détruit donc une partie du poids de ce corps, égale au poids du volume de fluide déplacé. Ainsi les corps pèsent moins dans l'air que dans le vide: la différence très-peu sensible pour la plupart, n'est point à négliger dans des expé iences délicates.

On peut, au moyen d'une balance qui porte à l'extrémité d'un de ses fléaux, un corps que l'on plonge dans un fluide, mesurer exactement la diminution de poids que le corps éprouve dans cette immersion, et déterminer sa pesanteur spécifique ou sa densité. relative à celle du fluide. Cette pesanteur est le rapport du poids du corps dans le vide, à la diminution de ce poids, lorsque le corps est entièrement plongé dans le fluide. C'est ainsi que l'on a déterminé les pesanteurs spécifiques des corps, comparées au maximum de densité de l'eau distillée.

Pour qu'un corps plus léger qu'un fluide, soit en équilibre à sa surface; il faut que son poids soit égal à celui du volume de fluide déplacé. Il faut de plus que les centres de gravité de cette portion du fluide, et du corps, soient sur une même verticale; car la résultante des actions de la pesanteur sur toutes les molécules du corps, passe par son centre de gravité, et la résultante de toutes les actions du fluide sur ce corps, passe par le centre de gravité du volume de fluide déplacé: ces résultantes devant être sur la même ligne pour se détruire; les centres de gravité sont sur la même verticale. Mais il est nécessaire pour la stabilité de l'équilibre, de joindre d'autres conditions aux deux précédentes. On pourra toujours la déterminer par la règle suivante.

Si par le centre de gravité de la section à fleur d'eau, d'un corps flottant, on conçoit un axe horizontal, tel que la somme des produits de chaque élément de la section, par le carré de sa distance à cet axe, soit plus petite que relativement à tout autre axe horizontal mené par le même centre; l'équilibre est stable dans tous les sens, lorsque cette somme surpasse le produit du volume de fluide déplacé, par la hauteur du centre de gravité du corps, au-dessus du centre de gravité de ce volume. Cette règle est principalement utile dans la construction des vaisseaux, auxquels il importe de donner une stabilité suffisante pour résister aux efforts des vagues et des vents. Dans un vaisseau, l'axe mené de la poupe à la proue, est celui par rapport auquel la somme dont on vient de parler, est un minimum; il est donc facile, au moyen de la règle précédente, d'en déterminer la stabilité.

Deux fluides renfermés dans un vase, s'y disposent de manière que le plus pesant occupe le fond du vase, et que la surface qui les sépare, est horizontale.

Si deux fluides communiquent au moyen d'un tube recourbé; la surface qui les sépare dans l'état d'équilibre, est à très-peu près horizontale, lorsque le tube est fort large: leurs hauteurs au-dessus de cette surface, sont réciproques à leurs pesanteurs spécifiques. En supposant donc à toute l'atmosphère, la densité de l'air à la température de la glace fondante et comprimé par une colonne de mercure de soixante-seize centimètres; sa hauteur serait de 7963^m. Mais, parce que la densité des couches atmosphériques diminue à mesure qu'elles sont plus élevées au-dessus du niveau des mers, la hauteur de l'atmosphère est beaucoup plus grande.

CHAPITRE V.

Du mouvement d'un système de corps.

Considérons d'abord l'action de deux points matériels de masses différentes, et qui, mus sur une même droite, viennent à se rencontrer. On peut concevoir immédiatement avant le choc, leurs mouvemens décomposés de manière qu'ils aient une vîtesse commune, et deux vîtesses contraires telles qu'en vertu d'elles seules, ils se feraient mutuellement équilibre. La vîtesse commune aux deux points n'est pas altérée par leur action mutuelle; cette vîtesse doit donc subsister après le choc. Pour la déterminer, nous observerons que la quantité de mouvement des deux points en vertu de cette commune vîtesse, plus la somme des quantités de mouvement dues aux vîtesses détruites, représente la somme des quantités de mouvement avant le choc, pourvu que l'on prenne avec des signes contraires, les quantités de mouvement dues aux vîtesses contraires; mais par la condition de l'équilibre, la somme des quantités de mouvement dues aux vîtesses détruites, est nulle; la quantité de mouvement due à la vîtesse commune, est donc égale à celle qui existait primitivement dans les deux points; par conséquent, cette vîtesse est égale à la somme des quantités de mouvement, divisée par la somme des masses.

Le choc de deux points matériels est purement idéal; mais il est facile d'y ramener celui de deux corps quelconques, en observant que si ces corps se choquent suivant une droite passant par leurs centres de gravité, et perpendiculaire à leurs surfaces de contact, ils agissent l'un sur l'autre, comme si leurs masses étaient réunies à ces centres; le mouvement se communique donc alors entre eux,

comme entre deux points matériels dont les masses seraient respectivement égales à ces corps.

La démonstration précédente suppose qu'après le choc, les deux corps doivent avoir la même vîtesse. On conçoit que cela doit être pour les corps mous dans lesquels la communication du mouvement a lieu successivement et par nuances insensibles; car il est visible que des l'instant où le corps choqué a la même vîtesse que le corps choquant, toute action cesse entre eux. Mais entre deux corps d'une dureté absolue, le choc est instantané, et il ne paraît pas nécessaire qu'après, leur vîtesse soit la même : leur impénétrabilité nautuelle exige seulement que la vîtesse du corps choquant soit la plus petite; d'ailleurs elle est indéterminée. Cette indétermination prouve l'absurdité de l'hypothèse d'une dureté absolue. En effet, dans la nature, les corps les plus durs, s'ils ne sont pas élastiques, ont une moliesse imperceptible, qui rend leur action mutuelle, successive, quoique sa durée soit insensible.

Quand les corps sont parfaitement élastiques, il faut pour avoir leur vitesse après le choc, ajouter ou retrancher de la vitesse commune qu'ils prendraient s'ils étaient sans ressort, la vitesse qu'ils acquerraient ou qu'ils perdraient dans cette hypothèse; car l'élasticité parfaite double ces effets, par le rétablissement des ressorts que le choc comprime; on aura donc la vitesse de chaque corps après le choc, en retranchant sa vitesse avant le choc, du double de cette vitesse commune.

De là il est aisé de conclure que la somme des produits de chaque masse par le carré de sa vitesse, est la même avant et après le choc des deux corps; ce qui a lieu généralement dans le choc d'un nombre quelconque de corps parfaitement élastiques, de quelque manière qu'ils agissent les uns sur les autres.

Telles sont les lois de la communication du mouvement, lois que l'expérience confirme, et qui dérivent mathématiquement des deux lois fondamentales du mouvement, que nous avons exposées dans le second chapitre de ce livre. Plusieurs philosophes ont essayé de les déterminer par la considération des causes finales. Descartes, persuadé que la quantité de mouvement devait se conserver toujours la même dans l'univers, sans égard à sa direction, a déduit de cette

fausse hypothèse, de fausses lois de la communication du mouvement, qui sont un exemple remarquable des erreurs auxquelles on s'expose en cherchant à deviner les lois de la nature, par les vues

qu'on lui suppose.

Lorsqu'un corps reçoit une impulsion suivant une direction qui passe par son centre de gravité; toutes ses parties se meuvent avec une égale vîtesse. Si cette direction passe à côté de ce point; les diverses parties du corps ont des vîtesses inégales, et de cette inégalité, résulte un mouvement de rotation du corps autour de, son centre de gravité, en même temps que ce centre est transporté. avec la vîtesse qu'il aurait prise, si la direction de l'impulsion eût. passé par ce point. Ce cas est celui de la terre et des planètes. Ainsi pour expliquer le double mouvement de rotation et de translation de la terre, il suffit de supposer qu'elle a reçu primitivement une impulsion dont la direction a passé à une petite distance de son centre de gravité, distance qui dans l'hypothèse de l'homogénéité de cette planète, est à peu près la cent soixantième partie de son rayon. Il est infiniment peu probable que la projection primitive des planètes, des satellites et des comètes, a passé exactement par leurs centres. de gravité; tous ces corps doivent donc tourner sur eux-mêmes. Par une raison semblable, le soleil qui tourne sur lui-même, doit avoir reçu une impulsion qui, n'ayant point passé par son centre de gravité, le transporte dans l'espace, avec le système planétaire, à moins qu'une impulsion dans un sens contraire, n'ait anéanti ce mouvement, ce qui n'est pas vraisemblable.

L'impulsion donnée à une sphère homogène, suivant une direction qui ne passe point par son centre, la fait tourner constamment autour du diamètre perpendiculaire au plan mené par son centre et par la direction de la force imprimée. De nouvelles forces qui sollicitent tous ses points, et dont la résultante passe par son centre, n'altèrent point le parallélisme de son axe de rotation. C'est ainsi que l'axe de la terre reste toujours à très-peu près parallèle à lui-même, dans sa révolution autour du soleil; sans qu'il soit nécessaire de supposer avec Copernic, un mouvement annuel des pôles de la terre autour de ceux de l'écliptique.

Si le corps a une figure quelconque, son axe de rotation peut

varier à chaque instant : la recherche de ces variations, quelles que soient les forces qui agissent sur le corps, est le problème le plus intéressant de la mécanique des corps durs, par ses rapports avec la précession des équinoxes et avec la libration de la lune. En le résolvant, on a été conduit à ce résultat curieux et très-utile. savoir que dans tout corps, il existe trois axes perpendiculaires entre eux, passant par son centre de gravité, et autour desquels il peut tourner d'une manière uniforme et invariable, quand il n'est point sollicité par des forces étrangères. Ces axes ont été pour cela, nommés axes principaux de rotation. Ils ont cette propriété que la somme des produits de chaque molécule du corps par le carré de sa distance à l'axe, est un maximum par rapport à deux de ces axes, et un minimum par rapport au troisième. Si l'on conçoit le corps tournant autour d'un axe fort peu incliné à l'un ou à l'autre des deux premiers; l'axe instantané de rotation du corps s'en écartera toujours d'une quantité très-petite; ainsi la rotation est stable relativement à ces deux premiers axes : elle ne l'est pas relativement au troisième; et pour peu que l'axe instantané de rotation s'en écarte, il fera autour de lui, de grandes oscillations.

Un corps ou un système de corps pesans, de figure quelconque, oscillant autour d'un axe fixe et horizontal, forme un pendule composé. Il n'en existe point d'autres dans la nature, et les pendules simples dont nous avons parlé ci-dessus, ne sont que de purs concepts géométriques propres à simplifier les objets. Il est facile d'y rapporter les pendules composés dont tous les points sont attachés fixement ensemble. Si l'on multiplie la longueur du pendule simple dont les oscillations sont de même durée que celles du pendule composé, par la masse de ce dernier pendule, et par la distance de son centre de gravité à l'axe d'oscillation; le produit sera égal à la somme des produits de chaque molécule du pendule composé, par le carré de sa distance au même axe. C'est au moyen de cette règle trouvée par Huyghens, que les expériences sur les pendules composés ont fait connaître la longueur du pendule simple qui bat les secondes.

Imaginons un pendule faisant de très-petites oscillations dans un même plan, et supposons qu'au moment où il est le plus éloigné de

la verticale, on lui împrime une petite force perpendiculaire au plan de son mouvement; il décrira une ellipse autour de la verticale. Pour se représenter son mouvement, on peut concevoir un pendule fictif qui continue d'osciller comme l'eût fait le pendule réel, sans la nouvelle force qui lui a été imprimée, tandis que ce pendule réel oscille en vertu de cette force, de chaque côté du pendule idéal, comme si ce pendule fictif était immobile et vertical. Ainsi le mouvement du pendule réel est le résultat de deux oscillations simples, coexistantes et perpendiculaires l'une à l'autre.

Cette manière d'envisager les petites oscillations des corps, peut être étendue à un système quelconque. Si l'on suppose le système dérangé de son état d'équilibre par de très-petites impulsions, et qu'ensuite on vienne à lui en donner de nouvelles; il oscillera par rapport aux états successifs qu'il aurait pris en vertu des premières impulsions, de la même manière qu'il oscillerait par rapport à son ctat d'équilibre, si les nouvelles impulsions lui étaient seules imprimées dans cet état. Les oscillations très-petites d'un système de corps, quelque composées qu'elles soient, peuvent donc être considérées comme étant formées d'oscillations simples, parfaitement semblables à celle du pendule. En effet, si l'on conçoit le système primitivement en repos et très-peu dérangé de son état d'équilibre, ensorte que la force qui sollicite chaque corps, tende à le ramener au point qu'il occuperait dans cet état, et de plus, soit proportionnelle à la distance du corps à ce point; il est clair que cela aura lieu pendant l'oscillation du système, et qu'à chaque instant, les vîtesses des différens corps seront proportionnelles à leurs distances à la position d'équilibre; ils arriveront donc tous au même instant, à cette position, et ils oscilleront de la même manière qu'un pendule simple. Mais l'état de dérangement que nous venons de supposer au système, n'est pas unique. Si l'on éloigne un des corps, de sa position d'équilibre, et que l'on cherche les situations des autres corps, qui satisfont aux conditions précédentes; on parvient à une équation d'un degré égal au nombre des corps du système, mobiles entre eux; ce qui donne pour chaque corps, autant d'espèces d'oscillations simples, qu'il y a de corps. Concevons au système, la première espèce d'oscillations; et à un instant quelconque, éloignons

par la pensée, tous les corps de leur position, proportionnellement aux quantités relatives à la seconde espèce d'escillations. En vertu de la coexistence des oscillations, le système oscillera par rapport aux états successifs qu'il aurait eus par la première espèce d'oscillations, comme il aurait oscillé par la seconde espèce scule, autour de son état d'équilibre; son mouvement sera donc formé des deux premières espèces d'oscillations. On peut semblablement combiner avec ce mouvement, la troisième espèce d'oscillations, et en continuant ainsi de combiner toutes ces espèces, de la manière la plusgénérale; on peut composer par la synthèse, tous les mouvemens possibles du système, pourvu qu'ils soient très-petits. Réciproquement, on peut par l'analyse, décomposer les mouvemens, en oscillations simples. De là résulte un moyen facile de reconnaître la stabilité absolue de l'équilibre d'un système de corps. Si dans toutes les positions relatives à chaque espèce d'oscillations, les forces tendent à ramener les corps à l'état d'équilibre, cet état sera stable : il ne le sera pas, ou il n'aura qu'une stabilité relative; si dans quelqu'une de ces positions, les forces tendent à en éloigner les corps.

Il est visible que cette manière d'envisager les mouvemens trèspetits d'un système de corps, peut s'étendre aux fluides eux-mêmes dont les oscillations sont le résultat d'oscillations simples, existantes à-la-fois, et souvent en nombre infini.

On a un exemple sensible de la coexistence des oscillations trèspetites, dans les ondes. Quand on agite légérement un point de la surface d'une eau stagnante, on voit des ondes circulaires se former et s'étendre autour de lui. En agitant la surface dans un autre point, de nouvelles ondes se forment et se mélent aux premières : elles se superposent à la surface agitée par les premières ondes, comme elles se seraient disposées sur cette surface, si elle eût été tranquille; ensorte qu'on les distingue parfaitement dans leur mélange. Ce que l'œil aperçoit relativement aux ondes, l'oreille le sent par rapport aux sons ou aux vibrations de l'air, qui se propagent simultanément sans s'altérer, et font des impressions très-distinctes.

Le principe de la coexistence des oscillations simples, que l'on doit à Daniel Bernoulli, est un de ces résultats généraux qui plaisent

à l'imagination, par la facilité qu'ils lui donnent, de se représenter les phénomènes et leurs changemens successifs. On le déduit aisément de la théorie analytique des petites oscillations d'un système de corps. Ces oscillations dépendent d'équations différentielles linéaires, dont les intégrales complètes sont la somme des intégrales particulières. Ainsi les oscillations simples se superposent les unes aux autres, pour former le mouvement du système; comme les intégrales particulières qui les expriment, s'ajoutent ensemble pour former les intégrales complètes. Il est intéressant de suivre ainsi dans les phénomènes de la nature, les vérités intellectuelles de l'analyse. Cette correspondance dont le système du monde offrira de nombreux exemples, fait l'un des plus grands charmes attachés aux spéculations mathématiques.

Il est naturel de ramener à un principe général, les lois du mouvement des corps; comme on a renfermé dans le seul principe des vîtesses virtuelles, les lois de leur équilibre. Pour y parvenir, considérons le mouvement d'un système de corps agissant les uns sur les autres, sans être sollicités par des forces accélératrices. Leurs vîtesses changent à chaque instant; mais on peut concevoir chacune de ces vîtesses dans un instant quelconque, comme étant composée de celle qui a lieu dans l'instant suivant, et d'une autre vîtesse qui doit être détruite au commencement de ce second instant. Si cette vitesse détruite était connue, il serait facile par la loi de la décomposition des forces, d'en conclure la vitesse des corps au second instant; or il est clair que si les corps n'étaient animés que des vitesses détruites, ils se feraient mutuellement équilibre; ainsi les lois de l'équilibre donneront les rapports des vitesses perdues, et il sera aisé d'en conclure les vitesses restantes et leurs directions; on aura donc par l'analyse infinitésimale, les variations successives du mouvement du système et sa position à tous les instans.

Il est clair que si les corps sont animés de forces accélératrices, on pourra toujours employer la même décomposition de vitesses; mais alors, l'équilibre doit avoir lieu entre les vîtesses détruites et ces forces.

Cette manière de ramener les lois du mouvement à celles de

l'équilibre, dont on est principalement redevable à d'Alembert, est générale et très-lumineuse. On aurait lieu d'être surpris qu'elle ait échappé aux géomètres qui s'étaient occupés avant lui, de dynamique; si l'on ne savait pas que les idées les plus simples sont presque toujours celles qui s'offrent les dernières à l'esprit humain.

Il restait encore à unir le principe que nous venons d'exposer, à celui des vîtesses virtuelles, pour donner à la mécanique, toute la perfection dont elle paraît susceptible. C'est ce que Lagrange a fait, et par ce moyen, il a réduit la recherche du mouvement d'un système quelconque de corps, à l'intégration des équations différentielles. Alors, l'objet de la mécanique est rempli, et c'est à l'analyse pure à achever la solution des problèmes. Voici la manière la plus simple de former les équations différentielles du mouvement d'un système quelconque.

Si l'on imagine trois axes fixes perpendiculaires entre eux, et qu'à un instant quelconque, on décompose la vîtesse de chaque point matériel d'un système de corps, en trois autres parallèles à ces axes; on pourra considérer chaque vitesse partielle, comme étant uniforme pendant cet instant : on pourra ensuite concevoir à la fin de l'instant, le point animé parallèlement à l'un de ces axes, de trois vitesses, savoir, de sa vîtesse dans cet instant, de la petite variation qu'elle reçoit dans l'instant suivant, et de cette même variation appliquée en sens contraire. Les deux premières de ces vitesses subsistent dans l'instant suivant; la troisième doit donc être détruite par les forces qui sollicitent le point, et par l'action des autres points du système. Ainsi en concevant les variations instantanées des vîtesses partielles de chaque point du système, appliquées à ce point en sens contraire ; le système doit être en équilibre en vertu de toutes ces variations et des forces qui l'animent. On aura par le principe des vîtesses virtuelles, les équations de cet équilibre; et en les combinant avec celles de la liaison des parties du système, on aura les équations différentielles du mouvement de chacun de ses points.

Il est visible que l'on peut ramener de la même manière, les lois du mouvement des fluides à celles de leur équilibre. Dans ce cas, les conditions relatives à la liaison des parties du système, se réduisent à ce que le volume d'une molécule quelconque du fluide, reste toujours le même, si le fluide est incompressible; et qu'il dépende de la pression suivant une loi donnée, si le fluide est élastique et compressible. Les équations qui expriment ces conditions et les variations du mouvement du fluide, renferment les différences partielles des coordonnées de la molécule, prises soit par rapport au temps, soit par rapport aux coordonnées primitives. L'intégration de ce genre d'équations offre de grandes difficultés, et l'on n'a pu y réussir encore que dans quelques cas particuliers relatifs au mouvement des fluides pesans dans des vases, à la théorie du son, et aux oscillations de la mer et de l'atmosphère.

La considération des équations différentielles du mouvement d'un système de corps, a fait découvrir plusieurs principes de mécanique, très-utiles et qui sont une extension de ceux que nous avons présentés sur le mouvement d'un point, dans le second chapitre de ce livre.

Un point matériel se meut uniformément en ligne droite, s'il n'éprouve pas l'action de causes étrangères. Dans un système de corps agissant les uns sur les autres sans éprouver l'action de causes extérieures, le centre commun de gravité se meut uniformément en ligne droite, et son mouvement est le même que si tous les corps étant supposés réunis à ce point, toutes les forces qui les animent, lui étaient immédiatement appliquées; ensorte que la direction et la quantité de leur résultante, restent constamment les mêmes.

On a vu que le rayon vecteur d'un corps sollicité par une force dirigée vers un point fixe, décrit des aires proportionnelles aux temps. Si l'on suppose un système de corps agissant les uns sur les autres d'une manière quelconque, et sollicités par une force dirigée vers un point fixe; si de ce point on mène à chacun d'eux, des rayons vecteurs que l'on projette sur un plan invariable passant par ce point; la somme des produits de la masse de chaque corps, par l'aire que trace la projection de son rayon vecteur, est proportionnelle au temps. C'est en cela que consiste le principe de la conservation des aires.

S'il n'y a pas de point fixe vers lequel le système soit attiré, et qu'il ne soit soumis qu'à l'action mutuelle de ses parties; on peut

prendre alors tel point que l'on veut, pour origine des rayons vecteurs.

Le produit de la masse d'un corps, par l'aire que décrit la projection de son rayon vecteur, pendant une unité de temps, est égal à la projection de la force entière de ce corps, multipliée par la perpendiculaire abaissée du point fixe, sur la direction de la force ainsi projetée: ce dernier produit est le moment de la force pour faire tourner le système autour de l'axe qui passant par le point fixe, est perpendiculaire au plan de projection; le principe de la conservation des aires revient donc à ce que la somme des momens des forces finies pour faire tourner le système autour d'un axe quelconque, passant par le point fixe, somme qui dans l'état d'équilibre est nulle, est constante dans l'état de mouvement. Présenté de cette manière, ce principe convient à toutes les lois possibles entre la force et la vîtesse.

On nomme force vive d'un système, la somme des produits de la masse de chaque corps par le carré de sa vîtesse. Lorsqu'un corps se meut sur une courbe ou sur une surface, sans éprouver d'action étrangère; sa force vive est toujours la même, puisque sa vitesse est constante. Si les corps d'un système n'éprouvent d'autres actions, que leurs tractions et pressions mutuelles, soit immédiatement, soit par l'entremise de verges et de fils inextensibles et sans ressort; la force vive du système est constante, dans le cas même où plusieurs de ces corps sont astreints à se mouvoir sur des lignes ou sur des surfaces courbes. Ce principe que l'on a nommé principe de la conservation des forces vives, s'étend à toutes les lois possibles entre la force et la vitesse; si l'on désigne par force vive d'un corps, le double de l'intégrale du produit de sa vîtesse, par la différentielle de la force finie dont il est animé.

Dans le mouvement d'un corps sollicité par des forces quelconques, la variation de la force vive est égale à deux fois le produit de la masse du corps, par la somme des forces accélératrices multipliées respectivement par les quantités élémentaires dont le corps s'avance vers leurs origines. Dans le mouvement d'un système de corps, le double de la somme de tous ces produits, est la variation de la force vive du système.

Concevons que dans le mouvement du système, tous les corps arrivent au même instant, dans la position où il serait en équilibre en vertu des forces accélératrices qui le sollicitent : la variation de la force vive y sera nulle par le principe des vitesses virtuelles; la force vive sera donc alors à son maximum ou à son minimum. Si le système n'était mu que par une seule espèce de ses oscillations simples; les corps en partant de la situation d'équilibre, tendraient à y revenir si l'équilibre est stable; leurs vîtesses diminueraient donc à mesure qu'ils s'en éloigneraient, et par conséquent la force vive serait dans cette position, un maximum. Mais si l'équilibre n'était point stable, les corps en s'éloignant de cet état, tendraient à s'en écarter davantage; et leurs vîtesses iraient en croissant; leur force vive serait donc alors un minimum. De là on peut conclure que si la force vive est constamment un maximum, lorsque les corps parviennent au même instant à la position d'équilibre, quelle que soit leur vitesse, l'équilibre est stable; et qu'au contraire, il n'a ni stabilité absolue, ni stabilité relative, si la force vive dans cette position du système, est constamment un minimum.

Enfin, on a vu dans le second chapitre, que la somme des intégrales du produit de chaque force finie du système, par l'élément de sa direction, somme qui dans l'état d'équilibre est nulle, devient un minimum dans l'état de mouvement. C'est en cela que consiste le principe de la moindre action, principe qui diffère de ceux du mouvement uniforme du centre de gravité, de la conservation des aires et des forces vives, en ce que ces principes sont de véritables intégrales des équations différentielles du mouvement des corps; au lieu que celui de la moindre action n'est qu'une combinaison singulière de ces mêmes équations,

La force finie d'un corps, étant le produit de sa masse par sa vîtesse, et la vîtesse multipliée par l'espace décrit dans un élément du temps, étant égale au produit de cet élément par le carré de la vitesse; le principe de la moindre action peut s'énoncer ainsi. L'intégrale de la force vive d'un système, multipliée par l'élément du temps, est un minimum; ensorte que la véritable économie de la nature, est celle de la force vive. C'est aussi l'économie que l'on doit se proposer dans la construction des machines qui sont

d'autant plus parfaites, qu'elles emploient moins de force vive; pour produire un effet donné. Si les corps ne sont sollicités par aucunes forces accélératrices, la force vive du système est constante; le système parvient donc d'une position à une autre quelconque, dans le temps le plus court.

On doit faire une remarque importante sur l'étendue de ces divers principes. Celui du mouvement uniforme du centre de gravité, et le principe de la conservation des aires, subsistent dans le cas même où par l'action mutuelle des corps, il survient des changemens brusques dans leurs mouvemens, et cela rend ces principes trèsutiles dans beaucoup de circonstances; mais le principe de la conservation des forces vives, et celui de la moindre action exigent que les variations du mouvement du système, se fassent par des puances insensibles.

Si le système éprouve des changemens brusques par l'action mutuelle des corps ou par la rencontre d'obstacles; la force vive reçoit à chacun de ces changemens, une diminution égale à la somme des produits de chaque corps par le carré de sa vîtesse détruite, en concevant sa vîtesse avant le changement, décomposée en deux, l'une qui subsiste, l'autre qui est anéantie, et dont le carré est évidemment égal à la somme des carrés des variations que le changement fait éprouver à la vitesse décomposée parallèlement à trois axes quelconques perpendiculaires entre eux.

Tous ces principes subsisteraient encore, eu égard au mouvement relatif des corps du système, s'il était emporté d'un mouvement général et commun aux foyers des forces, que nous avons supposés fixes. Ils ont pareillement lieu dans le mouvement relatif des corps sur la terre; car il est impossible, comme nous l'avons déjà observé, de juger du mouvement absolu d'un système de corps, par les seules apparences de son mouvement relatif.

Quels que soient le mouvement du système et les variations qu'il éprouve par l'action mutuelle de ses parties; la somme des produits de chaque corps, par l'aire que sa projection trace autour du centre commun de gravité, sur un plan qui passant par ce point, reste toujours parallèle à lui-même, est constante. Le plan sur lequel cette somme est un maximum, conserve une situation parallèle,

pendant le mouvement du système : la même somme est nulle par rapport à tout plan qui passant par le centre de gravité, est perpendiculaire à celui dont nous venons de parler; et les carrés des trois sommes semblables relatives à trois plans quelconques menés par le centre de gravité, et perpendiculaires entre eux; sont égaux au carré de la somme qui est un maximum. Le plan correspondant à cette somme, jouit encore de cette propriété remarquable, savoir que la somme des projections des aires tracées par les corps, les uns autour des autres, et multipliées respectivement par le produit des masses des deux corps que joint chaque rayon vecteur, est un maximum sur ce plan, et sur tous ceux qui lui sont parallèles. On peut donc ainsi retrouver à tous les instans, un plan qui passant par l'un quelconque des points du système, conserve toujours une situation parallèle; et comme en y rapportant le mouvement des corps, deux des constantes arbitraires de ce monvement disparaissent; il est aussi naturel de choisir ce plan, pour celui des coordonnées, que d'en fixer l'origine, au centre de gravité du système.

LIVRE QUATRIÈME.

DE LA THÉORIE DE LA PESANTEUR UNIVERSELLE

Opinionum commenta delet dies , naturse judicia confirmat.

Crc. de Nat. Deor.

Après avoir exposé dans les livres précédens, les lois des mouvemens célestes, et celles de l'action des causes motrices; il reste à les comparer, pour reconnaître les forces qui animent les corps du système solaire, et pour s'élever sans hypothèse et par une suite de raisonnemens géométriques, au principe général de la pesanteur, dont elles dérivent. C'est dans l'espace céleste, que les lois de la mécanique s'observent avec le plus de précision : tant de circonstances en compliquent les résultats sur la terre, qu'il est difficile de les démêler et plus difficile encore de les assujétir au calcul. Mais les corps du système solaire, séparés par d'immenses distances. et soumis à l'action d'une force principale dont il est facile de calculer les effets, ne sont troublés dans leurs mouvemens respectifs. que par des forces assez petites, pour que l'on ait pu embrasser dans des formules générales, tous les changemens que la suite des temps a produits et doit amener dans ce système. Il ne s'agit point ici de causes vagues, impossibles à soumettre à l'analyse, et que l'imagination modifie à son gré, pour expliquer les phénomènes. La loi de la pesanteur universelle a le précieux avantage de pouvoir être réduite au calcul, et d'offrir dans la comparaison de ses résultats aux observations, le plus sûr moyen d'en constater l'existence. On verra que cette grande loi de la nature, représente tous les phénomènes célestes, jusque dans leurs plus petits détails; qu'il n'y a pas une seule de leurs inégalités, qui n'en découle avec une précision admirable; et qu'elle a souvent devancé les observations, en nous dévoilant la cause de plusieurs mouvemens singuliers, entrevus par les astronomes, mais qui, vu leur complication et

Ċ

leur extrême lenteur, n'auraient pu être déterminés par l'observation seule, qu'après un grand nombre de siècles. Par son moyen, l'empirisme a été banni entièrement de l'astronomie qui, maintenant, est un grand problème de mécanique, dont les élémens du mouvement des astres, leurs figures et leurs masses sont les arbitraires, seules données indispensables que cette science doive tirer des observations. La plus profonde géométrie a été nécessaire pour la solution de ce problème, et pour en déduire les théories des divers phénomènes que les cieux nous présentent. Je les ai rassemblées dans mon Traité de Mécanique Céleste: je me bornerai ici à exposer les principaux résultats de cet ouvrage, en indiquant la route que les géomètres ont suivie pour y parvenir, et en essayant d'en faire sentir les raisons, autant que cela se peut, sans le secours de l'analyse.

CHAPITRE PREMIER.

Du principe de la pesanteur universelle.

Parmi les phénomènes du système solaire, le mouvement elliptique des planètes et des comètes, semble le plus propre à nous conduire à la loi générale des forces dont il est animé. L'observation a fait connaître que les aires tracées autour du soleil, par les rayons vecteurs des planètes et des comètes, sont proportionnelles aux temps; or on a vu dans le livre précédent, qu'il faut pour cela, que la force qui détourne sans cesse chacun de ces corps, de la ligne droite, soit dirigée constamment vers l'origine des rayons vecteurs; la tendance des planètes et des comètes vers le soleil, est donc une suite nécessaire de la proportionnalité des aires décrites par les rayons vecteurs, aux temps employés à les décrire.

Pour déterminer la loi de cette tendance, supposons les planètes mues dans des orbes circulaires; ce qui s'éloigne peu de la vérité. Les carrés de leurs vitesses réelles sont alors proportionnels aux carrés des rayons de ces orbes, divisés par les carrés des temps de leurs révolutions; mais par les lois de Kepler, les carrés de ces temps sont entre eux comme les cubes des mêmes rayons; les carrés des vîtesses sont donc réciproques à ces rayons. On a vu précédemment, que les forces centrales de plusieurs corps mus circulairement, sont comme les carrés des vîtesses, divisés par les rayons des circonférences décrites; les tendances des planètes vers le soleil, sont donc réciproques aux carrés des rayons de leurs orbes supposés circulaires. Cette hypothèse, il est vrai, n'est pas rigoureuse; mais le rapport constant des carrés des temps des révolutions des planètes, aux cubes des grands axes de leurs orbes, étant indépendant des excentricités; il est naturel de penser qu'il subsisterait

encore dans le cas où ces orbes seraient circulaires. Ainsi, la loi de la pesanteur vers le soleil, réciproque au carré des distances, est clairement indiquée par ce rapport.

L'analogie nous porte à penser que cette loi qui s'étend d'une planète à l'autre, a également lieu pour la même planète, dans ses diverses distances au soleil: son mouvement elliptique ne laisse aucun doute à cet égard. Pour le faire voir, suivons ce mouvement. en faisant partir la planète, du périhélie. Sa vitesse est alors à son maximum, et sa tendance à s'éloigner du soleil, l'emportant sur sa pesanteur vers cet astre, son rayon vecteur augmente et forme des angles obtus avec la direction de son mouvement; la pesanteur vers le soleil, décomposée suivant cette direction, diminue donc de plus en plus la vîtesse, jusqu'à ce que la planète ait atteint son aphélie. A ce point, le rayon vecteur redevient perpendiculaire à la courbe : la vitesse est à son minimum, et la tendance à s'éloigner du soleil, étant moindre que la pesanteur solaire, la planète s'en rapproche en décrivant la seconde partie de son ellipse. Dans cette partie, sa pesanteur vers le soleil, accroît sa vitesse, comme auparavant, elle l'avait diminuée : la planète se retrouve au périhélie. avec sa vitesse primitive, et recommence une nouvelle révolution semblable à la précédente. Maintenant, la courbure de l'ellipse étant la même au périhélie et à l'aphélie; les rayons osculateurs y sont les mêmes, et par conséquent, les forces centrifuges dans ces deux points, sont comme les carrés des vitesses. Les secteurs décrits pendant le même élément du temps, étant égaux ; les vitesses périhélie et aphélie sont réciproquement comme les distances correspondantes de la planète au soleil ; les carrés de ces vitesses sont donc réciproques aux carrés des mêmes distances; or au périhélie et à l'aphélie, les forces centrifuges dans les circonférences esculatrices sont évidemment égales aux pesanteurs de la planète vers le soleil; ces pesanteurs sont donc en raison inverse du carré des distances à cet astre.

Ainsi les théorèmes d'Huyghens sur la force centrifuge, suffisaient pour reconnaître la loi de la tendance des planètes vers le soleil; car il est très-vraisemblable qu'une loi qui a lieu d'une planète à l'autre, et qui se vérifie pour chaque planète, au périhélie et à l'aphélie, s'étend à tous les points des orbes planétaires, et géné-

ralement à toutes les distances du soleil. Mais pour l'établir d'une manière incontestable, il fallait avoir l'expression de la force qui, dirigée vers le foyer d'une ellipse, fait décrire cette courbe à un projectile : Newton trouva qu'en effet, cette force est réciproque au carré du rayon vecteur. Il fallait encore démontrer rigoureusement que la pesanteur vers le soleil, ne varie d'une planète à l'autre, qu'à raison de la distance à cet astre. Ce grand Géomètre fit voir que cela suit de la loi des carrés des temps des révolutions, proportionnels aux cubes des grands axes des orbites. En supposant donc toutes les planètes en repos à la même distance du soleil, et abandomées à leur pesanteur vers son centre, elles descendraient de la même hauteur en temps égal; résultat que l'on doit étendre aux comètes, quoique les grands axes de leurs orbes soient inconnus; car on a vu dans le second livre, que la grandeur des aires décrites par leurs rayons vecteurs, suppose la lei des carrés des temps de deurs révolutions, proportionnels aux cubes de ces axes.

L'analyse qui dans ses généralités, embrasse tout ce qui peut résulter d'une loi donnée, nous montre que non-seulement l'ellipse, mais toute section conique peut être décrite en vertu de la force qui retient les planètes dans leurs orbes; une comète peut donc se mouvoir dans une hyperbole; mais alors elle ne serait qu'une fois visible, et après son apparition, elle s'éloignerait au-delà des limites du système solaire, et s'approcherait de nouveaux soleils pour s'en éloigner encore, en parcourant ainsi les divers systèmes répandus dans l'immensité des cieux. Il est probable, vu l'infinie variété de la nature, qu'il existe des astres semblables: leurs apparitions doivent être fort rares, et nous ne devons observer le plus souvent, que des comètes qui, mues dans des orbes rentrans, reviennent à des intervalles plus ou moins longs, dans les régions de l'espace, voisines du soleil.

Les satellites éprouvent la même tendance que les planètes, vers ce grand corps. Si la lune n'était pas soumise à son action; au lieu de décrire un orbe presque circulaire autour de la terre, elle finirait bientôt par l'abandonner; et si ce satellite et ceux de Jupiter n'étaient pas sollicités vers le soleil, suivant la même loi que les planètes; il en résulterait dans leurs mouvemens, des inégalités sensibles

que l'observation ne fait point apercevoir. Les comètes, les planètes et les satellites sont donc assujétis à la même loi de pesanteur vers cet astre. En même temps que les satellites se meuvent autour de leur planète, le système entier de la planète et de ses satellites, est emporté d'un mouvement commun, dans l'espace, et retenu par la même force autour du soleil. Ainsi le mouvement relatif de la planète et de ses satellites, est à peu près le même que si la planète était en repos et n'éprouvait aucune action étrangère.

Nous voilà donc conduits sans aucune hypothèse et par une suite nécessaire des lois des mouvemens célestes, à regarder le centre du soleil, comme le foyer d'une force qui s'étend indéfiniment dans l'espace, en diminuant en raison du carré des distances, et qui attire semblablement tous les corps. Chacune des lois de Kepler nous découyre une propriété de cette force attractive : la loi des aires proportionnelles aux temps, nous montre qu'elle est constamment dirigée vers le centre du soleil : la figure elliptique des orbes planétaires nous prouve que cette force diminue comme le carré de la distance augmente : enfin, la loi des carrés des temps des révolutions, proportionnels aux cubes des grands axes des orbites, nous apprend que la pesanteur de tous les corps vers le soleil, est la même à distances égales. Nous nommerons cette pesanteur, attraction solaire; car sans en connaître la cause, nous pouvons par un de ces concepts dont les géomètres font souvent usage, supposer cette force produite par un pouvoir attractif qui réside dans le soleil.

Les erreurs dont les observations sont susceptibles, et les petites altérations du mouvement elliptique des planètes, laissant un peu d'incertitude sur les résultats que nous venons de tirer des lois de ce mouvement; on peut douter que la pesanteur solaire diminue exactement en raison inverse du carré des distances. Mais pour peu qu'elle s'écartât de cette loi, la différence serait très-sensible dans les mouvemens des périhélies des orbes planétaires. Le périhélie de l'orbe terrestre aurait un mouvement annuel de 200", si l'on augmentait seulement d'un dix-millième, la puissance de la distance à laquelle la pesanteur solaire est réciproquement proportionnelle: ce mouvement n'est que de 36",4 suivant les observations, et nous

en verrons ci-après, la cause; la loi de la pesanteur réciproque au carré des distances est donc au moins, extrêmement approchée, et sa grande simplicité doit la faire admettre, tant que les observations ne forceront pas de l'abandonner. Sans doute, il ne faut pas mesurer la simplicité des lois de la nature, par notre facilité à les concevoir; mais lorsque celles qui nous paraissent les plus simples, s'accordent parfaitement avec tous les phénomènes, nous sommes bien fondés à les regarder comme étant rigoureuses.

La pesanteur des satellites vers le centre de leur planète, est un résultat nécessaire de la proportionnalité des aires décrites par leurs rayons vecteurs, aux temps employés à les décrire; et la loi de la diminution de cette force, en raison du carré des distances, est indiquée par l'ellipticité de leurs orbes. Cette ellipticité est peu sensible dans les orbes des satellites de Jupiter, de Saturne et d'Uranus; ce qui rend la loi de la diminution de la pesanteur, difficile à constater par le mouvement de chaque satellite. Mais le rapport constant des carrés des temps de leurs révolutions, aux cubes des grands axes de leurs orbes, l'indique avec évidence, en nous montrant que d'un satellite à l'autre, la pesanteur vers la planète, est réciproque au carré des distances à son centre.

Cette preuve nous manque pour la terre qui n'a qu'un satellite : on peut y suppléer par les considérations suivantes.

La pesanteur s'étend au sommet des plus hautes montagnes; et le peu de diminution qu'elle y éprouve, ne permet pas de douter qu'à des hauteurs beaucoup plus grandes, son action serait encore sensible. N'est-il pas naturel de l'étendre jusqu'à la lune, et de penser que cet astre est retenu dans son orbite, par sa pesanteur vers la terre, de même que les planètes sont maintenues dans leurs orbes respectifs, par la pesanteur solaire? en effet, ces deux forces paraissent être de la même nature : elles pénètrent, l'une et l'autre, les parties intimes de la matière, et les animent de la même vitesse, si leurs masses sont égales; car on vient de voir que la pesanteur solaire sollicite également tous les corps placés à la même distance du soleil; comme la pesanteur terrestre les fait tomber dans le vide, en temps égal, de la même hauteur.

Un projectile lancé horizontalement avec force, d'une grande

hauteur, retombe au loin sur la terre, en décrivant une courbe parabolique; et si sa vitesse de projection était d'environ sept mille mêtres dans une seconde, et n'était point éteinte par la résistance de l'atmosphère, il ne retomberait point et circulerait comme un satellite, autour de la terre, sa force centrifuge étant alors égale à sa pesanteur. Pour former la lune, de ce projectile; il ne faut que l'élever à la même hauteur que cet astre, et lui donner le même mouvement de projection.

Mais ce qui achève de démontrer l'identité de la tendance de la lune vers la terre, avec la pesanteur; c'est qu'il suffit pour avoir cette tendance, de diminuer la pesanteur terrestre, suivant la loi générale des forces attractives des corps célestes. Entrons dans les détails convenables à l'importance de cet objet.

La force qui écarte à chaque instant, la lune, de la tangente de son orbite, lui fait parcourir dans une seconde, un espace égal au sinus verse de l'arc qu'elle décrit dans le même temps; puisque ce sinus est la quantité dont la lune, à la fin de la seconde, s'est éloignée de la direction qu'elle avait au commencement. On peut le déterminer par la distance de la lune à la terre, distance que la parallaxe lunaire donne en parties du rayon terrestre. Mais pour avoir un résultat indépendant des inégalités du mouvement de la lune, il faut prendre pour sa parallaxe moyenne, la partie de cette parallaxe, indépendante de ces inégalités, et qui correspond au demigrand axe de l'ellipse lunaire. Burg a déterminé par l'ensemble d'un grand nombre d'observations, la parallaxe lunaire; et il en résulte que la partie dont nous venons de parler, est de 10541", sur le parallèle dont le carré du sinus de latitude est 3. Nous choisissons ce parallèle, parce que l'attraction de la terre, sur les points correspondans de sa surface, est à très-peu près comme à la distance de la lune, égale à la masse de la terre, divisée par le carré de la distance à son centre de gravité. Le rayon mené d'un point quelconque de ce parallèle, au centre de gravité de la terre, est de 6369809 mètres; il est facile d'en conclure que la force qui sollicite la lune vers la terre, la fait tomber dans une seconde, de om.,00101728. On verra ci-après, que l'action du soleil, diminue la pesanteur lunaire, de sa 358ième partie; il faut donc augmenter d'un 358 lens, la hauteur précédente, pour la rendre indépendante de l'action du soleil, et alors elle devient 0^m ,00102005. Mais dans son mouvement relatif autour de la terre, la lune est sollicitée par une force égale à la somme des masses de la terre et de la lune, divisée par le carré de leur distance mutuelle; ainsi, pour avoir la hauteur dont la lune tomberait dans une seconde, par l'action seule de la terre, il faut multiplier l'espace précédent, par le rapport de la masse de la terre, à la somme des masses de la terre et de la lune; or l'ensemble des phénomènes qui dépendent de l'action de la lune, m'a donné sa masse égale à $\frac{1}{68,5}$ de celle de la terre; en multipliant donc cet espace par $\frac{68,5}{69,5}$, on aura 0^m ,00100544 pour la hauteur dont l'attraction de la terre fait tomber la lune, pendant une seconde.

Comparons cette hauteur, à celle qui résulte des observations du pendule. Sur le parallèle que nous considérons, la hauteur dont la pesanteur fait tomber les corps dans la première seconde, est par le chapitre XIV du premier livre, égale à 3^m.,65631; mais sur ce parallèle, l'attraction de la terre est plus petite que la gravité, des deux tiers de la force centrifuge due au mouvement de rotation à l'équateur, et cette force est 1 de la pesanteur; il faut donc augmenter l'espace précédent, de sa 432 ième partie, pour avoir l'espace dû à l'action seule de la terre, action qui sur ce parallèle, est égale à la masse de cette planète, divisée par le carré de son rayon. La valeur de cet espace sera ainsi 3^m.,66477. A la distance de la lune, il doit être diminué dans le rapport du carré du rayon du sphéroïde terrestre, au carré de la distance de cet astre; et il est visible qu'il suffit pour cela, de le multiplier par le carré du sinus de la parallaxe lunaire, ou de 10541"; on aura doncom.,00100473, pour la hauteur dont la lune doit tomber dans une seconde, par l'attraction de la terre. Cette hauteur donnée par les expériences du pendule, diffère extrêmement peu de celle qui résulte de l'observation directe de la parallaxe, et pour les faire coïncider, il ne faudrait altérer que de 2" environ, sa valeur précédente. Une aussi petite variation étant dans les limites des erreurs des obser-

vations et des élémens employés dans le calcul; il est certain que la force principale qui retient la lune dans son orbite, est la pesanteur terrestre affaiblie en raison du carré de la distance. Ainsi la loi de la diminution de la pesanteur, qui pour les planètes accompagnées de plusieurs satellites, est prouvée par la comparaison de leurs distances, et des durées de leurs révolutions, est démontrée pour la lune, par la comparaison de son mouvement, avec celui des projectiles à la surface de la terre. Déjà les observations du pendule, faites au sommet des montagnes, indiquaient cette diminution de la pesanteur terrestre; mais elles étaient insuffisantes pour en découvrir la loi, l'élévation du sommet des plus hautes montagnes, étant toujours fort petite par rapport au rayon de la terre : il fallait un astre éloigné de nous, comme la lune, pour rendre cette loi très-sensible, et pour nous convaincre que la pesanteur sur la terre, n'est qu'un cas particulier d'une force répandue dans tout l'univers.

Chaque phénomène éclaire d'une lumière nouvelle, les lois de la nature, et les confirme. C'est ainsi que la comparaison des expériences sur la pesanteur, avec le mouvement lunaire, nous montre clairement que l'on doit fixer l'origine des distances, aux centres de gravité du soleil et des planètes, dans le calcul de leurs forces attractives; car il est visible que cela a lieu pour la terre dont la force attractive est de la même nature que celles du soleil et des planètes.

Une forte analogie nous porte à étendre cette propriété attractive, aux planètes mêmes qui ne sont point accompagnées de satellites. La sphéricité commune à tous ces corps, indique évidemment que leurs molécules sont réunies autour de leurs centres de gravité, par une force qui à distances égales, les sollicite également vers ces points. Cette force se manifeste encore dans les perturbations qu'elle fait éprouver aux mouvemens planétaires: mais la considération suivante ne laisse sur son existence, aucun doute. On a vu que si les planètes et les comètes étaient placées à la même distance du soleil, leurs poids vers cet astre, seraient proportionnels à leurs masses; or c'est une loi générale de la nature, que la réaction est égale et contraire à l'action; tous ces corps réagissent donc sur le soleil, et l'attirent en raison de leurs masses; par conséquent ils

sont doués d'une force attractive proportionnelle aux masses et réciproque au carré des distances. Par le même principe, les satellites attirent les planètes et le soleil, suivant la même loi; cette propriété attractive est donc commune à tous les corps célestes.

Elle ne trouble point le mouvement elliptique d'une planète autour du soleil, lorsque l'on ne considère que leur action mutuelle. En effet, le mouvement relatif des corps d'un système ne change. point, quand on leur donne une vîtesse commune; en imprimant donc en sens contraire, au soleil et à la planète, le mouvement du premier de ces deux corps, et l'action qu'il éprouve de la part du second, le soleil pourra être regardé comme immobile; mais alors la planète sera sollicitée vers lui, par une force réciproque au carré des distances, et proportionnelle à la somme de leurs masses; son mouvement autour du soleil sera donc elliptique, et l'on voit par le même raisonnement, qu'il le serait encore, en supposant le système de la planète et du soleil, emporté d'un mouvement commun dans l'espace. Il est pareillement visible que le mouvement elliptique d'un satellite n'est point troublé par le mouvement de translation de sa planète, et qu'il ne le serait point par l'action du soleil, si cette action était exactement la même sur la planète et sur le satellite.

Cependant, l'action d'une planète sur le soleil influe sur la durée de sa révolution qui devient plus courte, quand la planète est plus considérable; ensorte que le rapport du cube du grand axe de l'orbite, au carré du temps de la révolution, est proportionnel à la somme des masses du soleil et de la planète. Mais puisque ce rapport est à très-peu près le même pour toutes les planètes; leurs masses doivent être fort petites eu égard à celle du soleil; ce qui est également vrai pour les satellites comparés à leur planète principale : c'est ce que confirment les volumes de ces différens corps.

La propriété attractive des corps célestes, ne leur appartient pas seulement en masse, mais elle est propre à chacune de leurs molécules. Si le soleil n'agissait que sur le centre de la terre, sans attirer chacune de ses parties; il en résulterait dans l'Océan des oscillations incomparablement plus grandes et très-différentes de celles qu'on y observe; la pesanteur de la terre vers le soleil, est donc le résultat des pesanteurs de toutes ses molécules qui, par conséquent, attirent le soleil, en raison de leurs masses respectives. D'ailleurs chaque corps sur la terre, pèse vers son centre proportionnellement à sa masse; il réagit donc sur elle, et l'attire suivant le même rapport : si cela n'était pas, et si une partie de la terre, quelque petite qu'on la suppose, n'attirait pas l'autre partie, comme elle en est attirée; le centre de gravité de la terre serait mu dans l'espace en vertu de la pesanteur; ce qui est inadmissible.

Les phénomènes célestes comparés aux lois du mouvement, nous conduisent donc à ce grand principe de la nature, savoir, que toutes les molécules de la matière s'attirent mutuellement, en raison des masses, et réciproquement au carré des distances. Déjà l'on entrevoit dans cette gravitation universelle, la cause perturbatrice des mouvemens elliptiques; car les planètes et les comètes étant soumises à leur action réciproque, elles doivent s'écarter un peu des lois de ce mouvement, qu'elles suivraient exactement, si elles n'obéissaient qu'à l'action du soleil. Les satellites troublés dans leurs mouvemens autour de leurs planètes, par leur attraction mutuelle et par celle du soleil, s'écartent pareillement de ces lois. On voit encore que les molécules de chaque corps céleste, réunies par leur attraction, doivent former une masse à peu près sphérique; et que la résultante de leur action à la surface du corps, doit y produire tous les phénomènes de la pesanteur. On voit pareillement que le mouvement de rotation des corps célestes, doit altérer un peu la sphéricité de leur figure, et l'aplatir aux pôles; et qu'alors la résultante de leurs actions mutuelles ne passant point exactement par leurs centres de gravité, elle doit produire dans leurs axes de rotation, des mouvemens semblables à ceux que l'observation y fait apercevoir. Enfin, on entrevoit que les molécules de l'Océan, inégalement attirées par le soleil et la lune, doivent avoir un mouvement d'oscillation, pareil au flux et reflux de la mer. Mais il convient de développer ces divers effets du principe général de la pesanteur, pour lui donner toute la certitude dont les vérités physiques sont susceptibles.

CHAPITRE II.

Des perturbations du mouvement elliptique des planètes.

Di les planètes n'obéissaient qu'à l'action du soleil, elles décriraient autour de lui, des orbes elliptiques. Mais elles agissent les unes sur les autres : elles agissent également sur le soleil ; et de ces attractions diverses, il résulte dans leurs mouvemens elliptiques, des perturbations que les observations font entrevoir, et qu'il est nécessaire de déterminer, pour avoir des tables exactes des mouvemens planétaires. La solution rigoureuse de ce problème, surpasse les moyens actuels de l'analyse, et nous sommes forcés de recourir aux approximations. Heureusement, la petitesse des masses des planètes eu égard à celle du soleil, et le peu d'excentricité et d'inclinaison mutuelle de la plupart de leurs orbites, donnent de grandes facilités pour cet objet. Néanmoins, il reste encore trèscompliqué, et l'analyse la plus délicate et la plus épineuse est indispensable, pour démêler dans le nombre infini des inégalités auxquelles les planètes sont assujéties, celles qui sont sensibles, et pour assigner leurs valeurs.

Les perturbations du mouvement elliptique des planètes, peuvent être partagées en deux classes très-distinctes; les unes affectent les élémens du mouvement elliptique, et croissent avec une extrême lenteur: on les a nommées inégalités séculaires. Les autres dépendent de la configuration des planètes, soit entre elles, soit à l'égard de leurs nœuds et de leurs périhélies, et se rétablissent toutes les fois que ces configurations redeviennent les mêmes; elles ont été nommées inégalités périodiques, pour les distinguer des inégalités séculaires qui sont également périodiques, mais dont

les périodes beaucoup plus longues sont indépendantes de la configuration mutuelle des planètes.

La manière la plus simple d'envisager ces diverses perturbations, consiste à imaginer une planète mue conformément aux lois du mouvement elliptique, sur une ellipse dont les élémens varient par des nuances insensibles; et à concevoir en même temps que la vraie planète oscille autour de cette planète fictive, dans un trèspetit orbe dont la nature dépend de ses perturbations périodiques.

Considérons d'abord les inégalités séculaires qui, en se dévelonpant avec les siècles, doivent changer à la longue, la forme et la position de tous les orbes planétaires. La plus importante de ces inégalités, est celle qui peut affecter les moyens mouvemens des planètes. En comparant entre elles, les observations faites depuis le renouvellement de l'astronomie, le mouvement de Jupiter a paru plus rapide, et celui de Saturne, plus lent que par la comparaison de ces mêmes observations, aux observations anciennes. Les Astronomes en ont conclu que le premier de ces mouvemens s'accélère, tandis que le second se ralentit de siècle en siècle; et. pour avoir égard à ces changemens, ils ont introduit dans les tables de ces planètes, deux équations séculaires croissantes comme les carrés des temps, l'une additive au moyen mouvement de Jupiter. et l'autre soustractive de celui de Saturne. Suivant Halley, l'équation séculaire de Jupiter est de 106" pour le premier siècle, à partir de 1700 : l'équation correspondante de Saturne est de 256",94. Il était naturel d'en chefcher la cause, dans l'action mutuelle de ces planètes les plus considérables de notre système. Euler qui s'en occupa le premier, trouva une équation séculaire égale pour ces deux planètes, et additive à leurs moyens mouvemens; ce qui répugne aux observations. Lagrange obtint ensuite des résultats qui leur sont plus conformes: d'autres Géomètres trouvèrent d'autres équations. Frappé de ces différences, j'examinai de nouveau, cet objet; et en apportant le plus grand soin à sa discussion, je parvins à la véritable expression analytique du mouvement séculaire des planètes. En y substituant les valeurs numériques des quantités relatives à Jupiter et à Saturne, je sus surpris de voir qu'elle devenait nulle. Je soupçonnai que cela n'était point particulier à

ces planètes, et que si l'on mettait cette expression sous la forme la plus simple dont elle est susceptible, en réduisant au plus petit nombre, les diverses quantités qu'elle renferme, au moyen des relations qui existent entre elles; tous ses termes se détruiraient mutuellement. Le calcul confirma ce soupçon, et m'apprit qu'en général, les moyens mouvemens des planètes et leurs distances moyennes au soleil, sont invariables, du moins quand on néglige les quatrièmes puissances des excentricités et des inclinaisons des orbites, et les carrés des masses perturbatrices; ce qui est plus que suffisant pour les besoins actuels de l'astronomie. Lagrange a confirmé depuis, ce résultat, en faisant voir par une très-belle méthode, qu'il a lieu en ayant même égard aux puissances et aux produits d'un ordre quelconque, des excentricités et des inclinaisons. Ainsi les variations observées dans les moyens mouvemens de Jupiter et de Saturne, ne dépendent point de leurs inégalités séculaires.

La constance des moyens mouvemens des planètes et des grands axes de leurs orbites, est un des phénomènes les plus remarquables du système du monde. Tous les autres élémens des ellipses planétaires, sont variables : ces ellipses s'approchent ou s'éloignent insensiblement de la forme circulaire: leurs inclinaisons sur un plan fixe et sur l'écliptique, augmentent ou diminuent : leurs périhélies et leurs nœuds sont en mouvement. Ces variations produites par l'action mutuelle des planètes, s'exécutent avec tant de lenteur, que pendant plusieurs siècles, elles sont à peu près proportionnelles aux temps. Déjà les observations les ont fait apercevoir : on a vu dans le premier livre, que le périhélie de l'orbe terrestre a présentement un mouvement annuel direct, de 36",44, et que la diminution séculaire de l'inclinaison de cet orbe à l'équateur, est de 160",85. Euler a développé, le premier, la cause de cette diminution que toutes les planètes concourent maintenant à produire par la situation respective des plans de leurs orbes. Ces variations de l'orbe terrestre ont fait coïncider le périgée du soleil, avec l'équinoxe du printemps, à une époque à laquelle on peut remonter par l'analyse, et que je trouve antérieure à notre ère, de 4089 ans. Il est remarquable que cette époque astronomique soit à peu près celle où la plupart

des chronologistes placent la création du monde. Les observations anciennes ne sont pas assez précises, et les observations modernes sont trop rapprochées pour fixer avec exactitude, la quantité des grands changemens des orbes planétaires; cependant elles se réunissent à prouver leur existence, et à faire voir que leur marche est celle qui dérive de la loi de la pesanteur universelle. On pourrait donc par la théorie, devancer les observations et assigner les vraies valeurs des inégalités séculaires des planètes, si l'on avait leurs masses; et l'un des plus sûrs moyens de les obtenir, sera le développement de ces inégalités par la suite des temps. Alors on pourra remonter par la pensée, aux changemens successifs que le système planétaire a éprouvés : on pourra prévoir ceux que les siècles à venir offriront aux observateurs; et le Géomètre embrassera d'un coup d'œil dans ses formules, tous les états passés et futurs de ce système. Le tableau du chapitre V du second livre, renserme les variations séculaires qui résultent des valeurs les plus probables des masses des planètes.

Ici, se présentent plusieurs questions intéressantes. Les ellipses planétaires ont-elles toujours été, et seront-elles toujours à peu près circulaires? quelques-unes des planètes n'ont-elles pas été originairement des comètes dont les orbes ont peu à peu approché du cercle, par l'attraction des autres planètes? la diminution de l'obliquité de l'écliptique, continuera-t-elle au point de faire coincider l'écliptique avec l'équateur, ce qui produirait l'égalité constante des jours et des nuits sur toute la terre? L'analyse répond à ces questions diverses, d'une manière satisfaisante. Je suis parvenu à démontrer que, quelles que soient les masses des planètes, par cela seul qu'elles se meuvent toutes dans le même sens, et dans des orbes peu excentriques et peu inclinés les uns aux autres; leurs inégalités séculaires sont périodiques et renfermées dans d'étroites limites, ensorte que le système planétaire ne fait qu'osciller autour d'un état moyen dont il ne s'écarte jamais que d'une trèspetite quantité. Les ellipses des planètes ont donc toujours été et seront toujours presque circulaires; d'où il suit qu'aucune planète n'a été primitivement une comète, du moins si l'on n'a égard qu'à l'action mutuelle des corps du système planétaire. L'écliptique pe

coincidera jamais avec l'équateur, et l'étendue entière des variations de son inclinaison, ne peut pas excéder trois degrés.

Les mouvemens des orbes planétaires et des étoiles embarrasseront, un jour, les Astronomes, lorsqu'ils chercheront à comparer des observations précises, séparées par de longs intervalles de temps. Déjà cet embarras commence à se faire sentir; il est donc intéressant de pouvoir retrouver au milieu de tous ces changemens, un plan invariable ou qui conserve toujours une situation parallèle. Nous avons exposé à la fin du livre précédent, un moyen simple pour déterminer un plan semblable, dans le mouvement d'un système de corps qui ne sont soumis qu'à leur action mutuelle? ce moyen appliqué au système solaire, donne la règle suivante.

« Si à un instant quelconque, et sur un plan passant par le » centre du soleil, on mène de ce point, des droites aux nœuds » ascendans des orbes planétaires avec ce dernier plan; si l'on » prend sur ces droites, à partir du centre du soleil, des lignes qui » représentent les tangentes des inclinaisons des orbes sur ce plan; » si l'on suppose ensuite aux extrémités de ces lignes, des masses » proportionnelles aux masses des planètes, multipliées respecti- » vement par les racines carrées des paramètres des orbes, et par » les cosinus de leurs inclinaisons; enfin si l'on détermine le centre » de gravité de ce nouveau système de masses; la droite menée » de ce point au centre du soleil, représentera la tangente de » l'inclinaison du plan invariable, sur le plan donné; et en la » prolongeant au-delà de ce point, jusqu'au ciel, elle y marquera » la position de son nœud ascendant. »

Quels que soient les changemens que la suite des siècles amène dans les orbes planétaires, et le plan auquel on les rapporte; le plan déterminé par cette règle, conservera toujours une situation parallèle. Sa position dépend, à la vérité, des masses des planètes; mais elles seront bientôt suffisamment connues, pour la fixer avec exactitude. En adoptant les valeurs de ces masses, que nous donnerons dans le chapitre suivant, et les élémens de leurs orbes, que renferme le tableau du chapitre V du second livre; on trouve que la longitude du nœud ascendant du plan invariable, était de 114°,7008, au commencement du dix-neuvième siècle,

et que son inclinaison à l'écliptique était de 1°,7565, à la même

époque.

Nous faisons ici abstraction des comètes qui, cependant, doivent influer sur la position de ce plan invariable; puisqu'elles font partie du système solaire. Il serait facile d'y avoir égard par la règle précédente, si leurs masses et les élémens de leurs orbes étaient connus. Mais dans l'ignorance où nous sommes sur ces objets, nous supposons les masses des comètes, assez petites pour que leur action sur le système planétaire soit insensible; et cela paraît fort vraisemblable, puisque la théorie de l'attraction mutuelle des planètes, suffit pour représenter toutes les inégalités observées dans leurs mouvemens. Au reste, si l'action des comètes est sensible à la longue, elle doit principalement altérer la position du plan que nous supposons invariable; et sous ce nouveau point de vue, la considération de ce plan sera encore utile, si l'on parvient à reconnaître ses variations; ce qui présentera de grandes difficultés.

La théorie des inégalités séculaires et périodiques du mouvement des planètes, fondée sur la théorie de la pesanteur universelle, a été confirmée par son accord avec toutes les observations anciennes et modernes. C'est surtout dans la théorie de Jupiter et de Saturne, que ces inégalités sont sensibles : elles s'y présentent sous une forme si compliquée, et la durée de leurs périodes est si considérable; qu'il eût fallu plusieurs siècles, pour en déterminer les lois par les seules observations que sur ce point, la théorie a devancées.

Après avoir reconnu l'invariabilité des moyens mouvemens planétaires; je soupçonnai que les altérations observées dans ceux de Jupiter et de Saturne, venaient de l'action des comètes. Lalande avait remarqué dans le mouvement de Saturne, des irrégularités qui ne paraissaient pas dépendre de l'action de Jupiter : il trouvait ses retours à l'équinoxe du printemps, plus prompts dans le dernier siècle, que ses retours à l'équinoxe d'automne; quoique les positions de Jupiter et de Saturne, soit entre eux, soit à l'égard de leura périhélies, fussent à peu près les mêmes. Lambert avait encore observé que le moyen mouvement de Saturne, qui par la comparaison des observations modernes aux anciennes, paraissait se

ralentir de siècle en siècle, semblait au contraire, s'accélérer, par la comparaison des observations modernes entre elles; tandis que le moyen mouvement de Jupiter offrait des phénomènes opposés. Tout cela portait à croire que des causes indépendantes de l'action de Jupiter et de Saturne, avaient altéré leurs mouvemens. Mais en y réfléchissant davantage, la marche des variations observées dans les moyens mouvemens de ces deux planètes, me parut si bien d'accord avec celle qui devait résulter de leur attraction mutuelle, que je ne balançai point à rejeter l'hypothèse d'une action étrangère.

C'est un résultat remarquable de l'action réciproque des planètes, que si l'on n'a égard qu'aux inégalités qui ont de très - longues périodes, la somme des masses de chaque planète, divisées respectivement par les grands axes de leurs orbes considérés comme des ellipses variables, est toujours à très-peu près constante. De là il suit que les carrés des moyens mouvemens, étant réciproques aux cubes de ces axes; si le mouvement de Saturne se ralentit par l'action de Jupiter, celui de Jupiter doit s'accélérer par l'action de Saturne; ce qui est conforme à ce que l'on observe. Je voyais de plus que le rapport de ces variations était le même que suivant les observations. En supposant avec Halley, le retardement de Saturne, de 256",94 pour le premier siècle, à partir de 1700; l'accélération correspondante de Jupiter serait de 104",91, et Halley avait trouvé 106",02 par les observations. Il était donc fort probable que les variations observées dans les moyens mouvemens de Jupiter et de Saturne, sont un effet de leur action mutuelle; et puisqu'il est certain que cette action ne peut y produire aucunes inégalités, soit constamment croissantes, soit périodiques, mais d'une période indépendante de la configuration de ces planètes, et qu'elle n'y cause que des inégalités relatives à cette configuration; il était naturel de penser qu'il existe dans leur théorie, une inégalité considérable de ce genre, dont la période est fort longue, et d'où naissent ces variations.

Les inégalités de cette espèce, quoique très-petites et presque insensibles dans les équations différentielles, augmentent considérablement par les intégrations, et peuvent acquérir de grandes

Digitized by Google

valeurs dans l'expression de la longitude des planètes. Il me sut aisé de reconnaître de semblables inégalités, dans les équations différentielles des mouvemens de Jupiter et de Saturne. Ces mouvemens approchent beaucoup d'être commensurables, et cinq fois le moyen mouvement de Saturne, est à très-peu près égal à deux fois celui de Jupiter. De là je conclus que les termes qui ont pour argument, cinq fois la longitude moyenne de Saturne, moins deux fois celle de Jupiter, pouvaient devenir très-sensibles par les intégrations, quoiqu'ils fussent multipliés par les cubes et les produits de trois dimensions, des excentricités et des inclinaisons des orbites. Je regardai conséquemment ces termes, comme une cause fort vraisemblable des variations observées dans les moyens mouvemens de ces planètes. La probabilité de cette cause, et l'importance de l'objet, me déterminèrent à entreprendre le calcul pénible, nécessaire pour m'en assurer. Le résultat de ce calcul confirma pleinement ma conjecture, en me faisant voir 1° qu'il existe dans la théorie de Saturne, une grande inégalité de 8895",7, dans son maximum, dont la période est de 929 ans, et qui doit être appliquée au moyen mouvement de cette planète; 2° que le mouvement de Jupiter est pareillement soumis à une inégalité correspondante dont la période est à très-peu près la même, mais qui affectée d'un signe contraire, ne s'élève qu'à 3662",4. La grandeur des coefficiens de ces inégalités, et la durée de leur période, ne sont pas toujours les mêmes : elles participent aux variations séculaires des élémens des orbites, dont elles dépendent: j'ai déterminé avec un soin particulier, ces coefficiens et leur diminution séculaire.

C'est à ces deux grandes inégalités auparavant inconnues, que l'on doit attribuer le ralentissement apparent de Saturne et l'accélération apparente de Jupiter. Ces phénomènes ont atteint leur maximum vers 1560: depuis cette époque, les moyens mouvemens apparens de ces deux planètes, se sont rapprochés des véritables, et ils leur ont été égaux en 1790. Voilà pourquoi Halley, en comparant les observations modernes aux anciennes, trouva le moyen mouvement de Saturne, plus lent, et celui de Jupiter, plus rapide que par la comparaison des observations modernes entre elles; au lieu que ces dernières ont indiqué à Lambert, une accé-

lération dans le mouvement de Saturne, et un retardement dans celui de Jupiter; et il est remarquable que les quantités de ces phénomènes, déduites des seules observations par Halley et Lambert, sont à très-peu près celles qui résultent des deux grandes inégalités dont je viens de parler. Si l'astronomie eût été renouvelée quatre siècles et demi plus tard, les observations auraient présenté des phénomènes contraires; les moyens mouvemens que l'astronomie d'un peuple assigne à Jupiter et à Saturne, peuvent donc nous éclairer sur le temps où elle a été fondée. On trouve ainsi que les Indiens ont déterminé les moyens mouvemens de ces planètes, dans la partie de la période des inégalités précédentes, où le moyen mouvement apparent de Saturne était le plus lent, et celui de Jupiter, le plus rapide: deux de leurs principales époques dont l'une remonte à l'an 3102 avant l'ère chrétienne, et dont l'autre se rapporte à l'an 1491, remplissent à peu près cette condition.

Le rapport presque commensurable des mouvemens de Jupiter et de Saturne, donne naissance à d'autres inégalités très-sensibles. La plus considérable affecte le mouvement de Saturne : elle se confondrait avec l'équation du centre, si cinq fois le moyen mouvement de cette planète, était exactement égal au double de celui de Jupiter. C'est elle principalement qui dans le dernier siècle, a rendu les retours de Saturne à l'équinoxe du printemps, plus prompts que ses retours à l'équinoxe d'automne. En général, lorsque j'eus reconnu ces diverses inégalités, et déterminé avec plus de soin qu'on ne l'avait fait encore, celles que l'on avait déjà soumises au calcul; je vis tous les phénomènes observés dans le mouvement de ces deux planètes, s'adapter d'eux-mêmes à la théorie : ils semblaient auparavant, faire exception de la loi de la pesanteur universelle; et maintenant, ils en sont une des preuves les plus frappantes. Tel a été le sort de cette brillante découverte, que chaque difficulté qui s'est élevée, a été pour elle le sujet d'un nouveau triomphe; ce qui est le plus sûr caractère du vrai système de la nature. Les formules auxquelles je suis parvenu pour représenter les mouvemens de Jupiter et de Saturne, satisfont avec une précision remarquable, aux cent onze dernières oppositions de ces

deux planètes, observées par les plus habiles Astronomes, au moyen des meilleures lunettes méridiennes et des plus grands quarts de cercle: l'erreur n'a jamais atteint 40"; et il n'y a pas vingt ans, que les erreurs des meilleures tables surpassaient quelquefois quatre mille secondes. Ces formules représentent encore, avec l'exactitude des observations mêmes, les observations de Flamsteed, celles des Arabes et les observations citées par Ptolémée. Cette grande précision avec laquelle les deux plus grosses planètes de notre système planétaire, ont obéi depuis les temps les plus reculés, aux lois de leur attraction mutuelle, prouve la stabilité de ce système; puisque Saturne dont l'attraction par le soleil, est environ cent fois moindre que l'attraction de la terre par le même astre, n'a cependant éprouvé depuis Hipparque jusqu'à nous, aucune action sensible de la part des causes étrangères.

Je ne puis m'empêcher ici, de comparer les effets réels du rapport qui existe entre les moyens mouvemens de Jupiter et de Saturne, avec ceux que l'astrologie lui avait attribués. En vertu de ce rapport, les conjonctions mutuelles de ces deux planètes se renouvellent dans l'intervalle d'environ vingt années; mais le point du ciel où elles arrivent, rétrograde à peu près d'un tiers du zodiaque, ensorte que si la conjonction arrive dans le premier point d'Ariès, elle aura lieu vingt ans après, dans le signe du Sagittaire; vingt ans encore après, elle arrivera dans le signe du Lion, pour revenir ensuite au signe du Bélier à dix degrés de distance de sa position primitive. Elle continuera ainsi d'avoir lieu dans ces trois signes, pendant près de deux cents ans; ensuite, elle parcourra de la même manière, dans les deux cents années suivantes, les trois signes du Taureau, du Capricorne et de la Vierge; elle emploiera pareillement deux siècles, à parcourir les signes des Gémeaux, du Verseau et de la Balance: enfin dans les deux siècles suivans, elle parcourra les signes de l'Écrevisse, des Poissons et du Scorpion, pour recommencer après, dans le signe d'Ariès. De là se compose une grande année dont chaque saison a deux siècles. On attribuait une température différente à ces diverses saisons ainsi qu'aux signes qui leur répondent : l'ensemble de ces trois signes se nommait trigone: le premier trigone était

celui du feu; le second, celui de la terre; le troisième, celui de l'air; et le quatrième, celui de l'eau. On conçoit que l'Astrologie a dù faire un grand usage de ces trigones que Kepler lui-même a expliqués avec beaucoup de détail, dans plusieurs ouvrages. Maisil est remarquable que la saine astronomie, en faisant disparaître cette influence imaginaire du rapport qu'ont entre eux, les moyens mouvemens de Jupiter et de Saturne, ait reconnu dans ce rapport, la source des grandes perturbations du système planétaire.

La planète Uranus, quoique récemment découverte, offre déjà des indices incontestables des perturbations qu'elle éprouve de la part de Jupiter et de Saturne. Les lois du mouvement elliptique ne satisfont point exactement à ses positions observées, et pour les représenter, il faut avoir égard à ses perturbations. Leur théorie, par un accord singulier, la place dans les années 1769, 1756 et 1690, aux mêmes points du ciel où le Monnier, Mayer et Flamsteed avaient déterminé la position de trois petites étoiles que l'on ne retrouve plus aujourd'hui; ce qui ne laisse aucun doute sur l'identité de ces astres avec Uranus.

Les petites planètes que l'on vient de découvrir, sont assujéties à de très-grandes inégalités qui répandront un nouveau jour sur la théorie des attractions célestes, et donneront lieu de la perfectionner; mais il n'a pas encore été possible de reconnaître ces. inégalités par les observations. Il n'y a pas trois siècles, que Copernic introduisit le premier dans les tables astronomiques, le mouvement des planètes autour du soleil : environ un siècle après, Kepler y fit entrer les lois du mouvement elliptique, qu'il avait trouvées par les observations de Ticho-Brahé, et qui ont conduit Newton à la découverte de la gravitation universelle. Depuis ces trois époques à jamais mémorables dans l'histoire des sciences, les progrès de l'analyse infinitésimale nous ont mis à portée de soumettre au calcul, les nombreuses inégalités des planètes, qui naissent de leurs attractions mutuelles, et par ce moyen, les tables ont acquis une précision inattendue : auparavant, leurs erreurs étaient de plusieurs minutes; maintenant elles se réduisent à un petit nombre de secondes, et souvent il est probable que leurs écarts sont dus aux erreurs inévitables des observations.

CHAPITRE III.

Des masses des planètes, et de la pesanteur à leur surface.

Le rapport de la masse d'une planète à celle du soleil, étant le principal élément de la théorie des perturbations qu'elle fait éprouver; la comparaison de cette théorie avec un grand nombre d'observations très-précises, doit le faire connaître d'autant plus exactement, que les perturbations dont il est la cause, sont plus considérables. C'est ainsi que j'ai déterminé les valeurs suivantes des masses de Vénus, de Mars, de Jupiter et de Saturne. Celles de Jupiter et de Saturne et des planètes qui ont des satellites, peuvent encore être déterminées de la manière suivante.

Il résulte des théorèmes sur la force centrifuge, exposés dans le livre précédent, que la pesanteur d'un satellite vers sa planète. est à la pesanteur de la terre vers le soleil, comme le rayon même de l'orbe du satellite, divisé par le carré du temps de sa révolution sidérale, est à la moyenne distance de la terre au soleil, divisée par le carré de l'année sidérale. Pour ramener ces pesanteurs, à la même distance des corps qui les produisent, il faut les multiplier respectivement par les carrés des rayons des orbes qu'elles font décrire; et comme à distances égales, les masses sont proportionnelles à leurs attractions; la masse de la planète est à celle du soleil, comme le cube du rayon moyen de l'orbe du satellite, divisé par le carré du temps de sa révolution sidérale, est au cube de la distance moyenne de la terre au soleil, divisé par le carré de l'année sidérale. Ce résultat suppose que l'on néglige la masse du satellite relativement à celle de la planète, et la masse de la planète eu égard à celle du soleil, ce que l'on peut faire sans erreur sensible; il deviendra plus exact, si l'on y substitue au lieu de la masse de

la planète, la somme des masses de la planète et de son satellite; et au lieu de la masse du soleil, la somme des masses du soleil et de la planète; parce que la force qui retient un corps dans son orbite relative autour de celui qui l'attire, dépend de la somme de leurs masses.

Appliquons le résultat précédent à Jupiter. Le rayon moyen de l'orbe du quatrième satellite, tel que nous l'avons donné dans le second livre, paraîtrait sous un angle de 7964",75, s'il était observé de la moyenne distance de la terre au soleil : le rayon du cercle renferme 636619",8; les rayons moyens des orbes du quatrième satellite et de la terre, sont donc dans le rapport de ces deux nombres. La durée de la révolution sidérale du quatrième satellite est de 16i,6890, et l'année sidérale est de 365i,2564. En partant de ces données, on trouve $\frac{1}{1067,09}$ pour la masse de Jupiter, celle du soleil étant prise pour unité. Il faut pour plus d'exactitude, diminuer d'une unité, le dénominateur de cette fraction qui devient ainsi $\frac{1}{1066,09}$; ce qui s'accorde d'une manière remarquable, avec la valeur conclue des perturbations du mouvement de Saturne; ensorte que l'on eût pu déduire exactement de ces perturbations, la distance moyenne du quatrième satellite, à Jupiter.

J'ai trouvé par le même procédé, la masse de Saturne égale à $\frac{1}{3359,4}$, et celle d'Uranus, égale à $\frac{1}{19504}$. La comparaison des observations de Jupiter avec les perturbations qu'il éprouve par l'action de Saturne, m'a fait voir avec certitude, qu'il faut diminuer la valeur précédente de la masse de cette dernière planète, et la réduire à $\frac{1}{3512,3}$, celle du soleil étant toujours prise pour unité. L'extrême difficulté d'observer les plus grandes élongations des satellites de Saturne, et l'ignorance où nous sommes sur l'ellipticité de leurs orbites, produit la différence d'un vingtième entre ces deux valeurs; et vu l'exactitude de ma théorie de Jupiter et de Saturne, et le grand nombre d'observations très-précises auxquelles Bouvard l'a comparée, je ne balance point à préférer la valeur conclue de cette théorie.

On peut obtenir de la manière suivante, la masse de la terre. Si l'on prend pour unité, sa moyenne distance au soleil; l'arc qu'elle décrit pendant une seconde de temps, sera le rapport de la circonférence au rayon, divisé par le nombre des secondes de l'année sidérale, ou par 36525638",4; en divisant le carré de cet arc, par le diamètre; on aura $\frac{1479565}{10^{30}}$ pour son sinus verse: c'est la quantité dont la terre tombe vers le soleil, dans une seconde, en vertu de son mouvement relatif autour de cet astre. On a vu dans le chapitre précédent, que sur le parallèle terrestre dont le carré du sinus de latitude est $\frac{1}{3}$, l'attraction de la terre fait tomber les corps dans une seconde, de 3^m,66477. Pour réduire cette attraction, à la moyenne distance de la terre au soleil, il faut la multiplier par le carré du sinus de la parallaxe solaire, et diviser le produit, par le nombre de mètres que renferme cette distance; or le rayon terrestre sur le parallèle que nous considérons, est de 6369809 mètres; en divisant donc ce nombre, par le sinus de la parallaxe solaire supposée de 27", on aura le rayon moyen de l'orbe terrestre, exprimé en mètres. Il suit de là, que l'effet de l'attraction de la terre, à la distance moyenne de cette planète au soleil, est égal au produit de la fraction $\frac{3,66477}{6369809}$ par le cube du sinus de 27"; il est par conséquent égal à 4,38906 en retranchant cette fraction, de $\frac{1479565}{10^{20}}$; on aura $\frac{1479560,6}{10^{20}}$ pour l'effet de l'attraction du soleil, à la même distance. Les masses du soleil et de la terre sont donc dans le rapport des nombres 1479560,6 et 4,38906; d'où il suit que la masse de la terre est $\frac{1}{537102}$.

Si la parallaxe du soleil est un peu différente de celle que nous venons de supposer; la valeur de la masse de la terre doit varier comme le cube de cette parallaxe, comparé à celui de 27". On voit ainsi que la petite incertitude qui reste encore sur la parallaxe solaire, en produit une trois fois plus grande sur la valeur de la masse terrestre; il y a donc de l'avantage à déterminer cette masse directement par ses effets. Les inégalités des mouvemens de Vénus

et de Mars, dues à son attraction, sont assez sensibles pour la faire connaître d'une manière précise, au moyen d'un grand nombre d'observations choisies dans les circonstances les plus favorables. On en déduirait ensuite la parallaxe du soleil avec d'autant plus d'exactitude, qu'une erreur sur cette masse, a trois fois moins d'influence sur la parallaxe.

La valeur de la masse de Mercure a été déterminée par son volume, en supposant les densités de cette planète et de la terre, réciproques à leurs moyennes distances au soleil; hypothèse, à la vérité, fort précaire; mais qui satisfait assez bien aux densités respectives de la terre, de Jupiter et de Saturne. Il faudra rectifier toutes ces valeurs, quand le temps aura mieux fait connaître les variations séculaires des mouvemens célestes.

Masses des planètes, celle du soleil étant prise pour unité.

Mercure.,	
Vénus	
La Terre	337102
Mars	2546320
Jupiter	1066,09
Saturne	-
Uranus	19504

Les densités des corps sont proportionnelles aux masses divisées par les volumes, et quand les masses sont à peu près sphériques, leurs volumes sont comme les cubes de leurs rayons; les densités sont donc alors comme les masses divisées par les cubes des rayons. Mais pour plus d'exactitude, il faut pendre pour le rayon d'une planète, celui qui correspond au parallèle dont le carré du sinus de latitude est \(\frac{1}{2}\).

On a vu dans le premier livre, que le demi-diamètre du soleil, vu de sa distance moyenne à la terre, soutend un angle de 2966": à la même distance, le rayon terrestre paraîtrait sous un angle de 27". Il est facile d'en conclure que la moyenne densité du globe solaire étant prise pour unité, celle de la terre est 3,9326. Cette valeur est indépendante de la parallaxe du soleil; car le volume et la masse de la terre, croissent, l'un et l'autre, comme le cube de cette parallaxe.

Le demi-diamètre de l'équateur de Jupiter vu de sa moyenne distance au soleil, est, suivant les mesures précises d'Arago, égal à 56",702; le demi-axe passant par ses pôles est de 53",497; le rayon du sphéroïde de Jupiter, correspondant au parallèle dont le carré du sinus de latitude est ; serait donc vu à la même distance, sous un angle de 55",967; et vu de la moyenne distance de la terre au soleil, il serait de 291",185. Il est facile d'en conclure la densité de Jupiter, égale à 0,99239.

On peut déterminer de la même manière, la densité des autres planètes; mais les erreurs dont les mesures de leurs diamètres apparens, et les évaluations de leurs masses sont encore susceptibles, répandent beaucoup d'incertitude sur les résultats du calcul. Si l'on suppose le diamètre apparent de Saturne, vu de sa distance moyenne au soleil, égal à 50"; on aura 0,55 pour sa densité, celle du soleil étant toujours prise pour unité.

En comparant les densités respectives de la terre, de Jupiter et de Saturne; on voit qu'elles sont plus petites pour les planètes plus distantes du soleil. Kepler parvint au même résultat, par des idées de convenance et d'harmonie; et il supposa les densités des planètes, réciproques aux racines carrées de leurs distances. Mais il jugea par les mêmes considérations, que le soleil était le plus dense de tous les astres; ce qui n'est pas. La planète Uranus dont la densité paraît surpasser celle de Saturne, s'écarte de la règle précédente; mais l'incertitude des mesures de son diamètre apparent et des plus grandes élongations de ses satellites, ne permet pas de prononcer sur cet objet.

Pour avoir l'intensité de la pesanteur à la surface du soleil et des planètes; considérons que si Jupiter et la terre étaient exac-

tement sphériques et sans mouvement de rotation, les pesanteurs à leur équateur, seraient proportionnelles aux masses de ces corps, divisées par les carrés de leurs diamètres; or à la distance moyenne du soleil à la terre, le demi-diamètre de Jupiter serait vu sous un angle de 291",185, et celui de l'équateur terrestre paraîtrait sous un angle de 27"; en représentant donc par l'unité, le poids d'un corps à ce dernier équateur; le poids de ce corps transporté sur l'équateur de Jupiter serait 2,716; mais il faut le diminuer d'environ un neuvième, pour avoir égard aux effets des forces centrifuges dues à la rotation de ces planètes. Le même corps pèserait 27,933 à l'équateur du soleil; et les corps y parcourent cent deux mètres, dans la première seconde de leur chute.

L'intervalle immense qui nous sépare de ces grands corps, semblait devoir dérober pour toujours à l'esprit humain, la connaissance des effets de la pesanteur à leur surface. Mais l'enchaînement des verités conduit à des résultats qui paraissaient inaccessibles, quand le principe dont ils dépendent, était inconnu. C'est ainsi que la mesure de l'intensité de la pesanteur à la surface du soleil et des planètes, est devenue possible par la découverte de la gravitation universelle.

CHAPITRE IV.

Des perturbations du mouvement elliptique des comètes.

L'ACTION planétaire produit dans le mouvement des comètes, des inégalités principalement sensibles sur les intervalles de leurs retours au périhélie. Halley ayant remarqué que les élémens des orbites des comètes observées en 1531, 1607 et 1682, étaient à fort peu près les mêmes; il en conclut qu'ils appartenaient à la même comète qui dans l'espace de 151 ans, avait fait deux révolutions. A la vérité, la durée de sa révolution a été de treize mois, plus longue de 1531 à 1607, que de 1607 à 1682; mais ce grand Astronome crut avec raison, que l'attraction des planètes, et principalement celle de Jupiter et de Saturne, avait pu occasionner cette différence; et d'après une estime vague de cette action pendant le cours de la période suivante, il jugea qu'elle devait retarder le prochain retour de la comète, et il le fixa à la fin de 1758; ou au commencement de 175q. Cette annonce était trop importante par elle-même, elle était liée trop intimement à la théorie de la pesanteur universelle dont les Géomètres vers le milieu du dernier siècle, s'occupaient à étendre les applications; pour ne pas exciter la curiosité de tous ceux qui s'intéressaient au progrès des sciences, et en particulier d'une théorie qui déjà s'accordait avec un grand nombre de phénomènes. Les Astronomes incertains de l'époque à laquelle la comète devait reparaître, la cherchèrent dès l'année 1757; et Clairaut qui l'un des premiers, avait résolu le problème des trois corps, appliqua sa solution, à la recherche des altérations que le mouvement de la comète avait éprouvées par l'action de Jupiter et de Saturne. Le 14 novembre 1758, il annonça à l'Académie des

Sciences, que la durée du retour de la comète à son périhélie, serait d'environ 618 jours, plus longue dans la période actuelle, que dans la précédente; et qu'en conséquence, la comète passeserait à son périhélie, vers le milieu d'avril 1759. Il observa en même temps, que les petites quantités négligées dans ses approximations, pouvaient avancer ou reculer ce terme, d'un mois: il remarqua d'ailleurs, « qu'un corps qui passe dans des régions aussi » éloignées, et qui échappe à nos yeux pendant des intervalles aussi » longs, ponrrait être soumis à des forces totalement inconnues, » telles que l'action des autres comètes, ou même de quelque » planète toujours trop distante du soleil, pour être jamais » aperçue. » Le Géomètre eut la satisfaction de voir sa prédiction accomplie : la comète passa au périhélie, le 12 mars 1759, dans les ·limites des erreurs dont il croyait son résultat susceptible. Après une nouvelle révision de ses calculs, Clairaut a fixé ce passage au -4 avril, et il l'aurait avancé jusqu'au 24 mars, c'est-à-dire à douze jours seulement de distance de l'observation; s'il eût employé la valeur de la masse de Saturne, donnée dans le chapitre précédent. Cette différence paraîtra bien petite, si l'on considère le grand nombre de quantités négligées, et l'influence qu'a pu avoir la planète Uranus dont l'existence au temps de Clairaut, était inconnue.

Remarquons à l'avantage des progrès de l'esprit humain, que cette comète qui, dans le dernier siècle, a excité le plus vif intérêt parmi les Géomètres et les Astronomes, avait été vue d'une manière bien différente, quatre révolutions auparavant, en 1456. La longue queue qu'elle traînait après elle, répandit la terreur dans l'Europe déjà consternée par la rapidité des succès des Turcs qui venaient de renverser le Bas-Empire; et le pape Calixte ordonna des prières publiques, dans lesquelles on conjurait la comète et les Turcs. On était loin de penser, dans ces temps d'ignorance, que la nature obéit toujours à des lois immuables. Suivant que les phénomènes arrivaient et se succédaient avec régularité, ou sans ordre apparent, on les faisait dépendre des causes finales, ou du hasard; et lorsqu'ils offraient quelque chose d'extraordinaire, et semblaient contrarier l'ordre naturel, on les regardait comme autant de signes de la colère céleste. Mais ces causes imaginaires ont été successi-

vement reculées avec les bornes de nos connaissances, et disparaissent entièrement devant la saine philosophie qui ne voit en elles, que l'expression de l'ignorance ou nous sommes, des véritables causes.

Aux frayeurs qu'inspirait alors l'apparition des comètes, a succédé la crainte que dans le grand nombre de celles qui traversent dans tous les sens, le système planétaire, l'une d'elles ne bouleverse la terre. Elles passent si rapidement près de nous, que les effets de leur attraction ne sont point à redouter : ce n'est qu'en choquant la terre, qu'elles peuvent y produire de funestes ravages. Mais ce choc, quoique possible, est si peu vraisemblable dans le cours d'un siècle; il faudrait un hasard si extraordinaire, pour la rencontre de deux corps aussi petits relativement à l'immensité de · l'espace dans lequel ils se meuvent; que l'on ne peut concevoir à cet égard, aucune crainte raisonnable. Cependant, la petite probabilité d'une pareille rencontre, peut en s'accumulant pendant une longue suite de siècles, devenir très-grande. Il est facile de se représenter les effets de ce choc sur la terre. L'axe et le mouvement de rotation changés : les mers abandonnant leur ancienne position pour se précipiter vers le nouvel équateur : une grande partie des hommes et des animaux, noyée dans ce déluge universel, ou détruite par la violente seçousse imprimée au globe terrestre : des espèces entières anéanties : tous -les monumens de l'industrie humaine, renversés : tels sont les désastres que le choc d'une comète a dû produire, si sa masse a été comparable à celle de la terre. On voit alors, pourquoi l'Océan a recouvert de hautes montagnes, sur lesquelles il a laissé des marques incontestables de son séjour; on voit comment les anímaux et les plantes du midi, ont pu exister dans les climats du nord où l'on retrouve leurs dépouilles et leurs empreintes; enfin, on explique la nouveauté du monde moral dont les monumens certains ne remontent pas au-delà de cinq mille ans. L'espèce humaine réduite à un petit nombre d'individus et à l'état le plus déplorable, uniquement occupée pendant très-long temps, du soin de se conserver, a dû perdre entièrement le souvenir des sciences et des arts ; et quand les progrès de la civilisation en ont fait sentir

de nouveau, les besoins; il a fallu tout recommencer, comme si les hommes eussent été placés nouvellement sur la terre. Quoi qu'il en soit de cette cause assignée par quelques philosophes, à ces phénomènes; je le répète, on doit être pleinement rassuré sur un aussi terrible événement, pendant le court intervalle de la vie; d'autant plus qu'il paraît que les masses des comètes sont d'une petitesse extrême, et qu'ainsi leur choc ne produirait que des révolutions locales. Mais l'homme est téllement disposé à recevoir l'impression de la crainte, que l'on a vu en 1773, la plus vive frayeur se répandre dans Paris, et de là se communiquer à toute la France, sur la simple annonce d'un mémoire dans lequel Lalande déterminait celles des comètes observées, qui peuvent le plus approcher de la terre: tant il est vrai que les erreurs, les superstitions, les vaines terreurs, et tous les maux qu'entraîne l'ignorance, se reproduiraient promptement, si la lumière des sciences venait à s'éteindre.

Les observations de la comète aperçue la première, en 1770. ont conduit les Astronomes à un résultat très-singulier. Après avoir inutilement tenté d'assujétir ces observations, aux lois du mouvement parabolique qui jusqu'alors avait représenté à fort peu près, celui des comètes; ils ont enfin reconnu qu'elle a décrit pendant son apparition, une ellipse dans laquelle la durée de sa révolution n'a pas surpassé six années. Lexel qui, le premier, fit cette curieuse remarque, satisfit de cette manière, à l'ensemble des observations de la comète. Mais une aussi courte durée ne pouvait être admise que d'après des preuves incontestables, fondées sur une discussion nouvelle et approfondie des observations de la comète, et des positions des étoiles auxquelles on l'a comparée. L'Institut proposa donc cette discussion, pour sujet d'un prix que Burckhardt a remporté; et ses recherches l'ont conduit à fort peu près au résultat de Lexel, sur lequel il ne doit maintenant rester aucun doute. Une comète dont la révolution est aussi prompte, devrait souvent reparaître; cependant elle n'avait point été observée avant 1770, et depuis on ne l'a point revue. Pour expliquer ce double phénomène, Lexel a remarqué qu'en 1767 et 1779, cette comète a fort approché de Jupiter dont l'attraction puissante a diminué en 1767, la distance périhélie de son orbite, de manière à rendre cet astre visible en

1770, d'invisible qu'il était auparavant; et ensuite a augmenté en 1779, cette même distance, au point de rendre la comète pour toujours invisible. Mais il fallait démontrer la possibilité de ces deux effets de l'attraction de Jupiter, en faisant voir que les élémens de l'ellipse décrite par la comète, pouvaient y satisfaire. C'est ce que j'ai fait, en soumettant cet objet à l'analyse; et par ce moyen, l'explication précédente est devenue vraisemblable.

De toutes les comètes observées, celle-ci a le plus approché de la terre qui, par conséquent, aurait dû en éprouver une action sensible, si la masse de cet astre était comparable à celle du globe terrestre. En supposant ces deux masses égales, l'action de la comète aurait accru de 11612", la durée de l'année sidérale. Nous sommes certains par les nombreuses comparaisons des observations, que Delambre vient de faire pour construire ses Tables du Soleil, que depuis 1770, l'année sidérale n'a pas augmenté de 3"; la masse de la comète n'est donc pas 1 de celle de la terre, et si l'on considère que cet astre en 1767 et 1779, a traversé le système des satellites de Jupiter, sans y causer le plus léger trouble; on verra qu'il est moindre encore. La petitesse des masses des comètes est généralement indiquée par leur influence insensible sur les mouvemens du système planétaire. Ces mouvemens sont représentés par la seule action des corps de ce système, avec une précision telle que l'on peut attribuer aux seules erreurs des approximations et des observations, les petits écarts de nos meilleures Tables. Mais des observations très-exactes continuées pendant plusieurs siècles, et comparées à la théorie, peuvent seules éclairer ce point important du système du monde.

CHAPITRE V.

Des perturbations du mouvement de la Lune.

LA lune est à-la-fois attirée par le soleil et par la terre; mais son mouvement autour de la terre, n'est troublé que par la différence des actions du soleil, sur ces deux corps. Si le soleil était à une distance infinie, il agirait sur eux également et suivant des droites parallèles ; leur mouvement relatif ne serait donc point troublé par cette action qui leur serait commune. Mais sa distance, quoique très-grande par rapport à celle de la lune, ne peut pas être supposée infinie : la lune est alternativement plus près et plus loin du soleil que la terre, et la droite qui joint son centre à celui du soleil, forme des angles plus ou moins aigus avec le rayon vecteur terrestre. Ainsi, le soleil agit inégalement et suivant des directions différentes, sur la terre et sur la lune; et de cette diversité d'actions, il doit résulter dans le mouvement lunaire, des inégalités dépendantes des positions respectives du soleil et de la lune. C'est dans leur recherche, que consiste le fameux problème des trois corps, dont la solution rigoureuse surpasse les forces de l'analyse, mais que la proximité de la lune eu égard à sa distance au soleil, et la petitesse de sa masse par rapport à celle de la terre, permettent de résoudre par approximation. Cependant, l'analyse la plus délicate est nécessaire pour démêler tous les termes dont l'influence est sensible. Leur discussion est le point le plus important de cette analyse, lorsqu'on se propose d'en rapprocher les résultats, des observations, et de la faire concourir à la perfection des tables lunaires; ce qui doit Atre son but principal. On peut facilement imaginer un grand nombre de moyens différens, de mettre en équation le problème des trois

-1

corps; mais sa vraie difficulté consiste à distinguer dans les équations différentielles, et à déterminer exactement les termes qui, quoique très-petits en eux-mêmes, acquièrent une valeur sensible par les intégrations successives; ce qui exige un choix avantageux de coordonnées, des considérations délicates sur la nature des intégrales, des approximations bien conduites, et des calculs faits avec soin, et vérifiés plusieurs fois. Je me suis attaché à remplir ces conditions, dans la théorie de la lune que j'ai connée dans ma Mécanique Céleste; et j'ai eu la satisfaction de voir mes résultats coïncider avec ceux que Mason et Burg ont trouvés par la comparaison de près de cinq mille observations de Bradley et de Maskeline, et qui ont donné aux tables lunaires une précision qu'il sera difficile de surpasser, et à laquelle la géographie et l'astronomie nautique sont principalement redevables de leurs progrès. On doit à Mayer, l'un des plus grands astronomes qui aient existé, la justice d'observer qu'il a le premier, porté ces tables, au degré d'exactitude nécessaire pour cet important objet. Mason et Burg ont adopté la forme qu'il leur avait donnée : ils ont rectifié les coefficiens de ses inégalités, et ils en ont ajouté quelques autres indiquées par sa théorie. Mayer a de plus, par l'invention du cercle répétiteur perfectionné considérablement par Borda, donné aux observations sur mer, la même précision qu'il avait apportée dans les tables lunaires. Enfin Burckhardt vient de perfectionner les tables lunaires, en donnant à leurs argumens, une forme plus simple et plus commode, et en déterminant leurs coefficiens par l'ensemble de toutes les observations modernes. L'objet de ma théorie, a été de montrer dans la seule loi de la pesanteur universelle, la source de toutes les inégalités du mouvement lunaire; et de me servir ensuite de cette loi, pour en perfectionner les tables, et pour en conclure plusieurs élémens importans du système du monde, tels que les équations séculaires de la lune, sa parallaxe, celle du soleil et l'aplatissement de la terre. Heureusement, lorsque je m'occupais de ces recherches, Burg, de son côté, travaillait à perfectionner les tables lunaires. Mon analyse lui a fourni plusieurs équations nouvelles, trèssensibles; et la comparaison qu'il en a faite avec un grand nombre

d'observations, en a constaté l'existence, et a répandu un grand jour sur les élémens dont je viens de parler.

Les mouvemens des nœuds et du périgée de la lune, sont les principaux effets des perturbations que ce satellite éprouve. Une première approximation n'avait donné d'abord aux Géomètres, que la moitié du second de ces mouvemens. Clairaut en conclut que la loi de l'attraction n'est pas aussi simple qu'on l'avait cru jusqu'alors, et qu'elle est composée de deux parties dont la première réciproque au carré des distances, est seule sensible aux grandes distances des planètes au soleil, et dont la seconde croissant dans un plus grand rapport, quand la distance diminue, devient sensible. à la distance de la lune à la terre. Cette conséquence fut vivement attaquée par Buffon: il se fondait sur ce que les lois primordiales de la nature, devant être les plus simples; elles ne peuvent dépendre que d'un seul module, et leur expression ne peut renfermer qu'un seul terme. Cette considération doit nous porter sans doute. à ne compliquer la loi de l'attraction, que dans un besoin extrême: mais l'ignorance où nous sommes, de la nature de cette force, no permet pas de prononcer avec assurance, sur la simplicité de son expression. Quoi qu'il en soit, le Métaphysicien eut raison, cette fois, vis-à-vis du Géomètre qui reconnut lui-même son erreur, et fit l'importanté remarque, qu'en poussant plus loin l'approximation. la loi de la pesanteur donne le mouvement du périgée lunaire, exactement conforme aux observations; ce qui a été confirmé depuis par tous ceux qui se sont occupés de cet objet. Le mouvement que j'ai conclu de ma théorie, ne diffère pas du véritable, de sa quatre cent quarantième partie : la différence n'est pas d'un trois cent cinquantième, à l'égard du mouvement des nœuds.

Quoique l'analyse soit indispensable pour faire sentir les rapports de toutes les inégalités du mouvement de la lune, à l'action du soleil combinée avec celle de la terre sur ce satellite; cependant, on peut sans y recourir, expliquer les causes de l'équation annuelle de la lune et de son équation séculaire. Je m'arrêterai d'autant plus volontiers à les exposer, que l'on en verra naître les plus grandes inégalités lunaires qui jusqu'à présent, ont été peu sensibles, mais que la suite des siècles doit développer aux observateurs.

Dans ses conjonctions avec le soleil, la lune en est plus prés que la terre, et en éprouve une action plus considérable; la différence des attractions du soleil sur ces deux corps, tend donc alors à diminuer la pesanteur de la lune vers la terre. Pareillement, dans les oppositions de la lune au soleil, ce satellite plus éloigné du soleil, que la terre, en est plus faiblement attiré; la différence des actions du soleil, tend donc encore à diminuer la pesanteur de la lune. Dans ces deux cas, cette diminution est à très-peu près la même, et égale à deux fois le produit de la masse du soleil, par le quotient du rayon de l'orbe lunaire, divisé par le cube de la distance du soleil à la terre. Dans les quadratures, l'action du soleil sur la lune, décomposée suivant le rayon vecteur lunaire, tend à augmenter la pesanteur de la lune vers la terre; mais l'accroissement de cette pesanteur, n'est que la moitié de la diminution qu'elle éprouve dans les sysigies. Ainsi, de toutes les actions du soleil sur la lune, dans le cours de sa révolution synodique, il résulte une force moyenne, dirigée suivant le rayon vecteur lunaire, qui diminue la pesanteur de ce satellite, et qui est égale à la moitié du produit de la masse du soleil, par le quotient de ce rayon divisé par le cube de la distance du soleil à la terre.

Pour avoir le rapport de ce produit, à la pesanteur de la lune; nous observerons que cette force qui la retient dans son orbite, est à très-peu près égale à la somme des masses de la terre et de la lune, divisée par le carré de leur distance mutuelle; et que la force qui retient la terre dans son orbite, égale à fort peu près, la masse du soleil, divisée par le carré de sa distance à la terre. Suivant la théorie des forces centrales, exposée dans le troisième livre, ces deux forces sont comme les rayons des orbes de la lune et du soleil, divisés respectivement par les carrés des temps des révolutions de ces astres; d'où il suit que le produit précédent est à la pesanteur de la lune, comme le carré du temps de la révolution sidérale de la terre; ce produit est donc à fort peu près \(\frac{1}{179}\) de cette pesanteur que l'action moyenne du soleil diminue ainsi de sa 358 lème partie.

En vertu de cette diminution, la lune est soutenue à une plus grande distance de la terre, que si elle était abandonnée à l'action 'entière de sa pesanteur: le secteur décrit par son rayon vecteur autour de la terre, n'en est point altéré; puisque la force qui la produit, est dirigée suivant ce rayon. Mais la vîtesse réelle et le mouvement angulaire de cet astre, sont diminués; et il est facile de voir qu'en éloignant la lune, de manière que sa force centrifuge soit égale à sa pesanteur diminuée par l'action du soleil, et que son rayon vecteur décrive un secteur égal à celui qu'il eût décrit dans le même temps sans cette action; ce rayon sera augmenté de sa 358ième partie, et le mouvement angulaire sera diminué d'un 179ième.

Ces quantités varient réciproquement aux cubes des distances du soleil à la terre. Quand le soleil est périgée, son action devenue plus puissante, dilate l'orbe de la lune; mais cet orbe se contracte à mesure que le soleil s'avance vers son apogée. La lune décrit donc une suite d'épicycloïdes dont les centres sont sur l'orbe terrestre, et qui se dilatent ou se resserrent, suivant que la terre s'approche ou s'éloigne du soleil. De là résulte dans son mouvement angulaire, une inégalité semblable à l'équation du centre du soleil. avec cette différence, qu'elle ralentit ce mouvement, quand celui du soleil augmente, et qu'elle l'accélère, quand le mouvement du soleil diminue; ensorte que ces deux équations sont affectées d'un signe contraire. Le mouvement angulaire du soleil est, comme on l'a vu dans le premier livre, réciproque au carré de sa distance : dans le périgée, cette distance étant d'un 60ième plus petite que sa grandeur moyenne, la vitesse angulaire est augmentée d'un 30ième : la diminution d'un 179ième produite par l'action du soleil, dans le mouvement lunaire, étant proportionnelle à l'augmentation du cube de la distance du soleil à la terre, elle est alors plus grande d'an vingtième; l'accroissement de cette diminution est donc la 3580 partie de ce mouvement. De là il suit que l'équation du centre du soleil, est à l'équation annuelle de la lune, comme un trentième du mouvement solaire, est à un 3580ieme du mouvement lunaire; ce qui donne 2398" pour l'équation annuelle. Elle est d'un huitième environ plus petite, suivant les observations: cette différence dépend des quantités négligées dans ce premier calcul.

Une cause semblable à celle de l'équation annuelle, produit l'équation séculaire de la lune. Halley a remarqué le premier, cette équation que Dunthorne et Mayer ont confirmée par une discussion approfondie des observations. Ces deux savans Astronomes ont reconnu que le même moyen mouvement lunaire ne peut pas satisfaire aux observations modernes, et aux éclipses observées par les Chaldéens et par les Arabes. Ils ont essayé de les représenter, en ajoutant aux longitudes moyennes de ce satellite, une quantité proportionnelle au carré du nombre des siècles avant ou après 1700. Suivant Dunthorne, cette quantité est de 30",9 pour le premier siècle: Mayer l'a faite de 21",6 dans ses premières Tables de la Lune, et l'a portée à 27",8 dans les dernières. Enfin, Lalande, par une discussion nouvelle de cet objet, a été conduit au résultat de Dunthorne.

Les observations arabes dont en a principalement fait usage, sont deux éclipses de soleil et une éclipse de lune, observées au Caire par Ebn-Junis vers la fin du dixième siècle, et depuis long-temps extraites d'un manuscrit de cet Astronome, existant dans la bibliothèque de Leyde. On avait élevé des doutes sur la réalité de ces éclipses; mais la traduction que Caussin vient de faire, de la partie de ce précieux manuscrit, qui renferme les observations, a dissipé ces doutes : de plus, elle nous a fait connaître vingt-cinq autres éclipses observées par les Arabes, et qui confirment l'accélération du moyen mouvement de la lune. Il suffit d'ailleurs, pour l'établir, de comparer les observations modernes, à celles des Grecs et des Chaldéens. En effet, Delambre, Bouvard et Burg ayant déterminé au moyen d'un grand nombre d'observations des deux siècles précédens, le mouvement séculaire actuel, avec une précision qui ne laisse qu'une très-légère incertitude ; ils l'ont trouvé de six ou sept cents secondes, plus grand que par les observations modernes comparées aux anciennes; le mouvement lunaire s'est donc accéléré depuis les Chaldéens; et les observations arabes faites dans l'intervalle qui nous en sépare, venant à l'appui de ce résultat, il est impossible de le révoquer en doute.

Maintenant, quelle est la cause de ce phénomène? La gravitation universelle qui nous a fait si bien connaître les nombreuses inégalités de la lune, rend-elle également raison de son inégalité séculaire? Ces questions sont d'autant plus intéressantes à résoudre.

que si l'on y parvient, on aura la loi des variations séculaires du mouvement de la lune; car on sent que l'hypothèse d'une accélération proportionnelle au temps, admise par les Astronomes, n'est qu'approchée, et ne doit pas s'étendre à un temps illimité.

Cet objet a beaucoup exercé les Géomètres; mais leurs recherches pendant long-temps infructueuses n'ayant fait découvrir, soit dans l'action du soleil et des planètes sur la lune, soit dans les figures non sphériques de ce satellite et de la terre, rien qui puisse altérer sensiblement son mouvement moyen; quelques-uns avaient pris le parti de rejeter son équation séculaire; d'autres, pour l'expliquer, avaient eu recours à divers moyens tels que l'action des comètes, la résistance de l'éther, et la transmission successive de la gravité. Cependant, la correspondance des autres phénomènes célestes avec la théorie de la pesanteur, est si parfaite; que l'on ne peut voir sans regret, l'équation séculaire de la lune se refuser à cette théorie, et saire seule, exception d'une loi générale et simple dont la découverte, par la grandeur et la variété des objets qu'elle embrasse, fait tant d'honneur à l'esprit humain. Cette réflexion m'ayant déterminé à considérer de nouveau, ce phénomène; après quelques tentatives, je suis enfin parvenu à découvrir sa cause.

L'équation séculaire de la lune est due à l'action du soleil sur ce satellite, combinée avec la variation séculaire de l'excentricité de l'orbe terrestre. Pour nous former une idée juste de cette cause, rappelons-nous que les élémens de l'orbe de la terre, éprouvent des altérations par l'action des planètes : son grand axe reste toujours le même; mais son excentricité, son inclinaison sur un plan fixe, la position de ses nœuds et de son périhélie, varient sans cesse. Rappelons-nous encore que l'action du soleil sur la lune, diminue d'un 179iane, sa vîtesse angulaire, et que son coefficient numérique varie réciproquement au cube de la distance de la terre au soleil; or en développant la puissance cubique inverse de cette distance, dans une série ordonnée par rapport aux sinus et cosinus du moyen mouvement de la terre et de ses multiples, le demi-grand axe de l'orbe terrestre étant pris pour unité; on trouve que cette série contient un terme égal à trois fois la moitié du carré de l'excentricité de cet orbe; la diminution de la vitesse angulaire de la lune, renferme donc le produit de ce terme, par un 179^{ième} de cette vitesse. Ce produit se confondrait avec la vitesse moyenne angulaire de la lune, si l'excentricité de l'orbe terrestre était constante; mais sa variation, quoique très-petite, a une influence sensible à la longue, sur le mouvement lunaire. Il est visible qu'il accélère ce mouvement, quand l'excentricité diminue; ce qui a eu lieu depuis les observations anciennes jusqu'à nos jours: cette accélération se changera en retardement, quand l'excentricité parvenue à son minimum, cessera de diminuer, pour commencer à croître.

Dans l'intervalle de 1750 à 1850, le carré de l'excentricité de l'orbe terrestre a diminué de 0,00000140595; l'accroissement correspondant de la vitesse angulaire de la lune a donc été un 0,0000000117821ième de cette vitesse. Cet accroissement ayant eu lieu successivement et proportionnellement au temps, son effet sur le mouvement de la lune, a été de moitié moindre que si dans tout le cours du siècle, il eût été le même qu'à la fin; il faut donc pour déterminer cet effet, ou l'équation séculaire de la lune, à la fin d'un siècle à partir de 1801, multiplier le mouvement séculaire de la lune, par la moitié du très-petit accroissement de sa vitesse angulaire; or dans un siècle, le mouvement de la lune est de 5347405439"; on aura ainsi 31",5017 pour son équation séculaire.

Tant que la diminution du carré de l'excentricité de l'orbe terrestre pourra être supposée proportionnelle au temps, l'équation
séculaire de la lune croîtra sensiblement comme le carré du temps;
il suffira donc de multiplier 31",5017 par le carré du nombre des
siècles écoulés entre le temps pour lequel on calcule, et le commencement du dix-neuvième siècle. Mais j'ai reconnu qu'en remontant
aux observations chaldéennes, le terme proportionnel au cube du
temps, dans l'expression en série, de l'équation séculaire de la
lune, devenait sensible. Ce terme est égal à 0",057214 pour le premier siècle: il doit être multiplié par le cube du nombre des siècles, à
partir de 1801, ce produit étant négatif pour les siècles antérieurs.

L'action moyenne du soleil sur la lune dépend encore de l'inclinaison de l'orbe lunaire à l'écliptique; et l'on pourrait croire que la position de l'écliptique étant variable, il doit en résulter dans le mouvement de ce satellite, des inégalités séculaires semblables à celle qu'y produit l'excentricité de l'orbe terrestre. Mais j'ai reconnu par l'analyse, que l'orbe lunaire est ramené sans cesse par l'action du soleil, à la même inclinaison sur celui de la terre; ensorte que les plus grandes et les plus petites déclinaisons de la lune sont assujéties en vertu des variations séculaires de l'obliquité de l'écliptique, aux mêmes changemens que les déclinaisons semblables du soleil. Cette constance dans l'inclinaison de l'orbe lunaire, est confirmée par toutes les observations anciennes et modernes. L'excentricité de l'orbe lunaire et son grand axe n'éprouvent pareillement que des altérations insensibles, par les changemens de l'excentricité de l'orbe terrestre.

Il n'en est pas ainsi des variations du mouvement des nœuds etdu périgée lunaire. En soumettant ces variations, à l'analyse; j'ai trouvé que l'influence des termes dépendans du carré de la force perturbatrice, et qui, comme on l'a vu, doublent le moyen mouvement du périgée, est plus grande encore sur la variation de ce mouvement. Le résultat de cette épineuse analyse, m'a donné une équation séculaire, triple de l'équation séculaire du moyen mouvement de la lune, et soustractive de la longitude moyenne de sont périgée; ensorte que le moyen mouvement du périgée se ralentit. l'orsque celui de la lune s'accélère. J'ai trouvé semblablement dans le mouvement des nœuds de l'orbe lunaire, sur l'écliptique vraie, une équation séculaire additive à leur longitude moyenne, et égale à soixante-quatorze centièmes de l'équation séculaire du moyen mouvement. Ainsi le mouvement des nœuds se ralentit, comme celui du périgée, quand celui de la lune augmente; et les équations séculaires de ces trois mouvemens, sont constamment dans le rapport des nombres 0,74; 3 et 1. Il est facile d'en conclure que les trois mouvemens de la lune par rapport à ses nœuds, à son périgée et au soleil, vont en s'accélérant, et que leurs équations séculaires sont comme les nombres 0,26; 4 et 1.

Les siècles à venir développeront ces grandes inégalités qui produiront, un jour, des variations au moins égales au quarantième de la circonférence, dans le mouvement séculaire de la lune, et au treizième de la circonférence dans celui du périgée. Ces iné-

galités ne vont pas tonjours croissant : elles sont périodiques ? comme celles de l'excentricité de l'orbe terrestre, dont elles dépendent; et ne se rétablissent qu'après des millions d'années. Elles doivent altérer à la longue, les périodes imaginées pour embrasser des nombres entiers de révolutions de la lune, par rapport à ses nœuds, à son périgée et au soleil, périodes qui diffèrent sensiblement dans les diverses parties de l'immense période de l'équation séculaire. La période lunisolaire de six cents ans, a été rigoureuse à une époque à laquelle il serait facile de remonter par l'analyse, si les masses des planètes étaient exactement connues; mais cette connaissance si desirable pour la perfection des théories astronomiques, nous manque encore. Heureusement, Jupiter dont on a bien déterminé la masse, est celle des planètes, qui a le plus d'influence sur l'équation séculaire de la lune; et les valeurs des autres masses planétaires, sont assez approchées, pour que l'on n'ait point à craindre sur la grandeur de cette équation, une erreur très-sensible.

Déjà, les observations anciennes, malgré leur imperfection, confirment ces inégalités; et l'on peut en suivre la marche, soit dans les observations, soit dans les Tables astronomiques qui se sont succédées jusqu'à nos jours. On a vu que les anciennes éclipses avaient fait connaître l'accélération du mouvement de la lune, avant que la théorie de la pesanteur en eût développé la cause. En comparant à cette théorie, les observations modernes, et les éclipses observées par les Arabes, les Grecs et les Chaldéens; on trouve entre elles, un accord qui paraît surprenant, quand on considère l'imperfection des observations anciennes, et l'incertitude que laisse encore sur les variations de l'excentricité de l'orbe de la terre, celle où nous sommes sur les masses de Vénus et de Mars. Le développement des équations séculaires de la lune, sera une des données les plus propres à déterminer ces masses.

Il était surtout intéressant de vérifier la théorie de la pesanteur, relativement à l'équation séculaire du périgée de l'orbe lunaire, ou à celle de l'anomalie, quatre fois plus grande que l'équation séculaire du moyen mouvement. Sa découverte me fit juger qu'il fallait diminuer de quinze à seize minutes, le mouve-

ment séculaire actuel du périgée, employé par les Astronomes, et qu'ils avaient conclu par la comparaison des observations modernes aux anciennes. En effet, n'ayant point eu égard à son équation séculaire, ils ont dû trouver ce mouvement trop rapide; de même qu'ils assignaient un moyen mouvement trop petit à la lune, lorsqu'ils ne tenaient point compte de son équation séculaire. C'est ce que Bouvard et Burg ont confirmé en déterminant le mouvement séculaire actuel du périgée lunaire, au moyen d'un très-grand nombre d'observations modernes. Bouvard a de plus retrouvé le même mouvement, par les observations les plus anciennes et par celles des Arabes, en ayant égard à son équation séculaire dont il a ainsi prouvé d'une manière incontestable, l'existence et la grandeur.

Les moyens mouvemens et les épogues des Tables de l'Almageste et des Arabes, indiquent évidemment des trois équations séculaires des mouvemens de la lune. Les Tables de Ptolémée sont le résultat d'immenses calculs faits par cet Astronome et par Hipparque. Le travail d'Hipparque ne nous est point parvenu: nous savons senlement par le témoignage de Ptolémée, qu'il avait mis le plus grand soin à choisir les éclipses les plus avantageuses à la détermination des élémens qu'il cherchait à connaître. Ptolémée, après deux siècles et demi d'observations nouvelles, ne changea que très-peu ces élémens; il est donc certain que ceux qu'il a employés dans ses Tables, ont été déterminés par un très-grand nombre d'éclipses dont il n'a rapporté que celles qui lui paraissaient le plus conformes aux résultats moyens qu'Hipparque et lui avaient obtenus. Les éclipses ne font bien connaître que le moyen mouvement synodique de la lane, et ses distances à ses nœuds et à son périgée; on ne peut donc compter que sur ces élémens, dans les Tables de l'Almageste; or en remontant à la première époque de ces Tables, au moyen des mouvemens déterminés par les seules observations modernes, on ne retrouve point les moyennes distances de la lune, à ses necuds, à son périgée et au soleil, que ces Tables donnent à cette époque. Les quantités qu'il faut ajouter à ces distances, sont à fort peu près celles qui résultent des équations séculaires; les élémens de ces Tables confirment donc à-lagfois, l'existence de ces équations et les valeurs que je leur ai assignées.

Les mouvemens de la lune par rapport à son périgée et au soleil, plus lents dans les Tables de l'Almageste, que de nos jours, indiquent encore dans ces mouvemens, une accélération pareillement indiquée, soit par les corrections qu'Albaténius, huit siècles après Ptolémée, fit aux élémens de ces Tables, soit par les époques des Tables qu'Ebn-Junis construisit vers l'an mil, sur l'ensemble des observations chaldéennes, grecques et arabes.

Il est remarquable que la diminution de l'excentricité de l'orbe terrestre, soit beaucoup plus sensible dans les mouvemens de la Hune, que par elle-même. Cette diminution qui depuis l'éclipse la plus ancienne dont nous ayons connaissance, n'a pas altéré de quinze minutes, l'équation du centre du soleil, a produit une variation de deux degrés dans la longitude de la lune, et de huit degrés dans son anomalie moyenne: on pouvait à peine la soupconner d'après les observations d'Hipparque et de Ptolémée : celles des Arabes l'indiquaient avec beaucoup de vraisemblance; mais les anciennes éclipses comparées à la théorie de la pesanteur, ne laissent aucun doute à cet égard. Cette réflexion, si je puis ainsi dire, des variations séculaires de l'orbe terrestre par le mouvement de la lune, en vertu de l'action du soleil, a lieu même pour les inégalités périodiques. C'est ainsi que l'équation du centre de l'orbe terrestre, reparaît dans le mouvement lunaire, avec un signe contraire, et réduite environ au dixième de sa valeur; pareillement l'inégalité causée par l'action lunaire dans le mouvement de la terre, se reproduit dans celui de la lune, mais affaiblie à peu près dans le rapport de cinq à neuf. Enfin l'action du soleil, en transmettant à la lune, les inégalités que les planètes font éprouver au mouvement de la terre, rend cette action indirecte des planètes sur la lune, plus considérable que leur action directe sur ce satellite.

Ici nous voyons un exemple de la manière dont les phénomènes en se développant, nous éclairent sur leurs véritables causes. Lorsque la seule accélération du moyen mouvement de la lune, était connue; on pouvait l'attribuer à la résistance de l'éther, ou à la transmission successive de la gravité. Mais l'analyse nous montre que ces deux causes ne peuvent produire aucune altération sensible dans les moyens mouvemens des nœuds et du périgée lunaire; et cela seul suffirait pour les exclure, quand même la vraie cause des variations observées dans ces mouvemens serait encore ignorée. L'accord de la théorie avec les observations, nous prouve que si les moyens mouvemens de la lune sont altérés par des causes étrangères à la pesanteur universelle, leur influence est très-petite et jusqu'à présent insensible.

Cet accord établit d'une manière certaine, la constance de la durée du jour, élément essentiel de toutes les théories astronomiques. Si cette durée surpassait maintenant, d'un centième de seconde, celle du temps d'Hipparque; la durée du siècle actuel serait plus grande qu'alors, de 365",25: dans cet intervalle, la lune décrit un arc de 534",6; le moyen mouvement séculaire actuel de la lune, en paraîtrait donc augmenté de cette quantité, ce qui augmenterait de 13",51 son équation séculaire pour le premier siècle, à partir de 1801, et qui, par ce qui précède, est de 31",5017. Les observations ne permettent pas de supposer une augmentation aussi considérable; on peut donc assurer que depuis Hipparque, la durée du jour n'a pas varié d'un centième de seconde.

Une des équations les plus importantes de la théorie lunaire, en ce qu'elle dépend de l'aplatissement de la terre, est relative au mouvement de la lune en latitude. Cette inégalité est proportionnelle au sinus de la longitude vraie de ce satellite. Elle est le résultat d'une nutation dans l'orbe lunaire, produite par l'action du sphéroïde terrestre, et correspondante à celle que la lune produit dans notre équateur, de manière que l'une de ces nutations est la réaction de l'autre; et si toutes les molécules de la terre et de la lune, étaient liées fixement entre elles, par des droites inflexibles et sans masse, le système entier serait en équilibre autour du centre de gravité de la terre, en vertu des forces qui produisent ces deux nutations; la force qui anime la lune, compensant sa petitesse, par la longueur du levier auquel elle serait attachée. On peut représenter cette inégalité en latitude, en concevant que l'orbe luntire, au lieu de se mouvoir uniformément sur l'écliptique avec

une inclinaison constante, se meut avec les mêmes conditions: sur un plan très-peu incliné à l'écliptique, et passant constamment par les équinoxes, entre l'écliptique et l'équateur; phénomène qui se reproduit d'une manière plus sensible, dans les mouvemens des satellites de Jupiter, en vertu de l'aplatissement considérable de cette planète. Ainsi, cette inégalité diminue l'inclinaison de l'orbe lunaire à l'écliptique, lorsque son nœud ascendant coïncide avec l'équinoxe du printemps : elle l'augmente, lorsque ce nœud coincide avec l'équinoxe d'automne; ce qui ayant eu lieu en 1755, a renda trop grande, l'inclinaison que Mason a déterminée par les observations de Bradley de 1750 à 1760. En effet, Berg qui l'a déterminée par des observations faites pendant un plus long intervalle, et en ayant égard à l'inégalité précédente, a trouvé une inclinaison plus petite de 11"1. Cet Astronome a bien voulu, à ma prière, déterminer le coefficient de cette inégalité, par un très-grand nombre d'observations, et il l'a trouvé égal à - 24",6914; Burckhardt en employant à cet objet, un nombre plus grand encore d'observations, vient de retrouver le même résultat qui donne jour l'aplatissement de la terre.

On peut encore déterminer cet aplatissement, au moyen de l'inégalité du mouvement lunaire en longitude, qui dépend de la longitude du nœud de la lune. L'observation l'avait indiquée à Mayer, et Mason l'avait fixée à 25",765; mais comme elle ne paraissait pas résulter de la théorie de la pesanteur, la plupart des Astronomes la négligeaient. Cette théorie m'a fait voir qu'elle a pour cause, l'aplatissement de la terre. Burg et Burckhardt l'ant fixée par un grand nombre d'observations, à 20",987; ce qui répond à l'aplatissement 1 205,05, le même à très-peu près, que donne l'inégalité précédente du mouvement en latitude. Ainsi la lune, par l'observation de ses mouvemens, rend sensible à l'astronomie perfectionnée, l'ellipticité de la terre dont elle fit connaître la rondeur aux premiers astronomes, par ses éclipses.

Les deux inégalités précédentes méritent toute l'attention des observateurs : elles ont sur les mesures géodésiques, l'avantage

de donner l'aplatissement de la terre, d'une manière moins dépendante des irrégularités de sa figure. Si la terre était homogène, elles seraient beaucoup plus grandes que suivant les observations qui, par conséquent, excluent cette homogénéité. Il en résulte encore que la pesanteur de la lune vers la terre, se compose des attractions de toutes les molécules de cette planète; ce qui fournit une nouvelle preuve de l'attraction de toutes les parties de la matière.

La théorie combinée avec les expériences du pendule, et les mesures des degrés terrestres, donne, comme on l'a vu dans le premier chapitre de ce livre, la parallaxe de la lune, à très-peu près conforme aux observations; ensorte que l'on pourrait réciproquement conclure de ces observations, la grandeur de la terre.

Enfin, la parallaxe solaire peut être déterminée avec précision, au moyen d'une équation lunaire en longitude, qui dépend de la simple distance angulaire de la lune au soleil. Pour cela, j'ai calculé avec un soin particulier, le coefficient de cette équation; et en l'égalant à celui que Burckhardt et Burg ont trouvé par la comparaison d'une longue série d'observations, j'en ai conclu la parallaxe moyenne du soleil, de 25",51, la même que plusieurs Astronomes ont déduite du dernier passage de Vénus.

Il est très-remarquable qu'un Astroneme, sans sortir de son observatoire, en comparant seulement ses observations à l'analyse, eût pu déterminer exactement la grandeur et l'aplatissement de la terre, et sa distance au soleil et à la lune, élémens dont la connaissance a été le fruit de longs et pénibles voyages dans les deux hémisphères. L'accord des résultats obtenus par ces deux méthodes, est une des preuves les plus frappantes de la gravitation universelle.

Les nombreuses comparaisons que Bouvard et Burg ont faites des Tables lunaires avec les observations de la fin du dix-septième siècle, par la Hire et Flamsteed, du milieu du dix-huitième par Bradley, et avec la suite non interrompue des observations de Maskeline depuis Bradley jusqu'à ce jour, présentent un résultat auquel on était lein de s'attendre. Les observations de la Hire et de Flamsteed, comparées à celles de Bradley, indiquent un mouvement

séculaire sidéral de la lune, plus grand de cent trente secondes au moins, que celui qui résulte des observations de Bradley, comparées aux dernières de Maskeline; et les observations faites depuis vingt ans, prouvent que la diminution du mouvement séculaire a été plus grande encore dans cet intervalle; ensorte que l'existence d'une anomalie dans le moyen mouvement de la lune, est au moins fort vraisemblable. De là, suit la nécessité de retoucher sans cesse aux époques des Tables, jusqu'à ce que l'on parvienne à déterminer la cause ou la loi de cette anomalie singulière. Elle tient évidemment à une ou plusieurs inégalités inconnues, à longues périodes, et dont la théorie peut seule indiquer les lois. En la considérant avec soin, je n'ai remarqué aucune inégalité semblable, dépendante de l'action des planètes. S'il en existait une dans le mouvement de rotation de la terre; elle pourrait produire l'anomalie observée dans le moyen mouvement de la lune; mais l'examen attentif de toutes les causes qui peuvent altérer cette rotation, m'a prouvé que ses variations sont insensibles. Revenant donc aux actions de la terre et du soleil sur la lune, j'ai reconnu qu'elles produisent trois inégalités à longues périodes, propres à expliquer cette anomalie. La première est proportionnelle au cosinus du double de la longitude du nœud de l'orbe lunaire, plus la longitude de son périgée; la seconde dépend du sinus du même argument diminué de la longitude du périgée solaire. Enfin la troisième est proportionnelle au sinus de l'argument de la première, diminué de trois fois la longitude de ce dernier périgée. Les périodes de ces trois inégalités sont à fort peu près de 180 ans, et comme la longitude du périgée solaire est maintenant de 311°, ces inégalités se confondent à peu près; mais elles se sépareront dans la suite, en vertu du mouvement de ce périgée; et alors on pourra connaître leurs valeurs respectives. Les termes qui peuvent les produire, quoique très-petits dans les équations différentielles, s'accroissent considérablement par les intégrations successives, en vertu de la circonstance particulière qui donne le mouvement du périgée lunaire, à fort peu près double de celui des nœuds. Si les observations futures confirment ces inégalités, alors en perfectionnant sous ce point de vue, la théorie lunaire, on verra la cause qui rend sensibles, leurs coefficiens analytiques. Dans une matière aussi difficile, le développement des inégalités par les observations est d'un grand secours à l'analyste, en lui indiquant celles qu'il doit principalement considérer, comme devenant sensibles par les intégrations. Des inégalités semblables aux trois précédentes, peuvent affecter les autres élémens du mouvement lunaire : les Géomètres et les Astronomes doivent s'y rendre trèsattentifs.

Il suit incontestablement de ce qu'on vient de voir, que la loi de la gravitation universelle, est la cause unique de toutes les inégalités de la lune; et si l'on considère le grand nombre et l'étendue de ces inégalités, et la proximité de ce satellite à la terre; on jugera qu'il est de tous les corps célestes, le plus propre à établir cette grande loi de la nature, et la puissance de l'analyse, de ce merveilleux instrument sans lequel il eût été impossible à l'esprithumain, de pénétrer dans une théorie aussi compliqués, et qui peut être employée comme un moyen de découvertes, aussi certain que l'observation elle-même.

Quelques partisans des causes finales, ont imaginé que la Inneravait été donnée à la terre, pour l'éclairer pendant les nuits. Dans ce cas, la nature n'aurait point atteint le but qu'elle se serait proposé; puisque souvent, nous sommes privés à-la-fois de la lumière du soleil et de celle de la lume. Pour y parvenir, il eût suffi de mettre à l'origine, la lume en opposition avec le soleil, dans le plan même de l'échiptique, à une distance de la terre, égale à la centième partie de la distance de la terre au soleil; et de donner à la lume et à la terre, des vîtesses parallèles proportionnelles à leurs distances à cet astre. Alors, la lune sans cesse en opposition au soleil, cût décrit autour de lui, une ellipse semblable à celle de la terre; ces deux astres se seraient succédés l'un à l'autre sur l'horizon; et comme à cette distance, la lune n'eût point été éclipsée, sa lumière aurait constamment remplacé celle du soleil.

D'autres philosophes frappés de l'opinion singulière des Arcadiens qui se croyaient plus anciens que la lune, ont pensé que ce satellite était primitivement une comète qui, passant fort près de la terre,

Digitized by Google

avait été forcée par son attraction, de l'accompagner. Mais en remontant par l'analyse, aux temps les plus reculés; on voit toujours la lune se mouvoir dans un orbe presque circulaire, comme les planètes autour du soleil. Ainsi, ni la lune, ni aucun satellite n'a été originairement une comète.

La pesanteur à la surface de la lune, étant beaucoup plus petite qu'à la surface de la terre, et cet astre n'ayant point d'atmosphère qui puisse opposer une résistance sensible au mouvement des projectiles; on conçoit qu'un corps lancé avec une grande force, par l'explosion d'un volcan lunaire, peut atteindre et dépasser la limite où l'attraction de la terre commence à l'emporter sur l'attraction de la lune. Il suffit pour cela, que sa vitesse initiale suivant la verticale, soit de 2500 mètres par seconde. Alors au lieu de retomber sur la lune, il devient un satellite de la terre. et décrit autour d'elle, une orbite plus ou moins alongée. Son impulsion primitive peut être tellement dirigée, qu'il aille rencontrer directement l'atmosphère terrestre : il peut aussi ne l'atteindre qu'après plusieurs et même un très-grand nombre de révolutions; car il est visible que l'action du soleil qui change d'une manière très-sensible les distances de la lune à la terre, doit produire dans le rayon vecteur d'un satellite mu dans un orbe fort excentrique, des variations beaucoup plus considérables, et peut diminuer à la longue la distance périgée du satellite, ensorte qu'il pénètre dans notre atmosphère. Ce corps, en la traversant avec une grande vitosse, éprouverait une très-forte résistance, et finirait bientôt par se précipiter sur la terre: le frottement de l'air, contre sa surface, suffirait pour l'enflammer et le faire détoner, s'il renfermait des matières propres à ces effets; et alors il nous offrirait tous les phénomènes que présentent les aérolithes. S'il était bien prouvé qu'ils ne sont point des produits des volcans ou de l'atmosphère, et qu'il faut en chercher la cause au-delà, dans l'espace céleste; l'hypothèse précédente qui d'ailleurs, explique l'identité de composition, observée dans les aérolithes, par celle de leur origine, ne serait point destituée de vraisemblance.

CHAPITRE VI.

Des perturbations des satellites de Jupiter.

De tous les satellites, les plus intéressans après celui de la terre. sont les satellites de Jupiter. Les observations de ces astres, les premiers que le télescope a fait découvrir dans les cieux, ne remontent pas à deux siècles : on ne doit même compter qu'un siècle et demi d'observations de leurs éclipses. Mais dans ce court intervalle, ils nous ont offert par la promptitude de leurs révolutions, tous les grands changemens que le temps ne développe qu'avec une extrême lenteur, dans le système planétaire dont celui des satellites est l'image. Les inégalités produites par leur attraction mutuelle, sont peu différentes de celles des planètes et de la lune: cependant les rapports qu'ont entre eux, les moyens mouvemens des trois premiers satellites, donnent à quelques-unes de ces inégalités, des valeurs considérables qui ont une grande influence sur toute leur théorie. On a vu dans le second livre, que ces mouvemens sont à peu près en progression soudouble, et qu'ils sont assujétis à des inégalités très-sensibles dont les périodes différentes entre elles, se transforment dans les éclipses, en une seule de 4371,659. Ces inégalités se présentent les premières, dans la théorie des satellites, comme elles se sont les premières, offertes aux observateurs. Non-seulement la théorie détermine ces inégalités; elle nous montre de plus, ce que les observations indiquaient avec beaucoup de vraisemblance, savoir, que l'inégalité du second satellite, est le résultat de deux inégalités dont l'une ayant pour cause l'action du premier satellite, varie comme le sinus de l'excès

de la longitude du premier satellite sur celle du second, et dont l'autre produite par l'action du troisième satellite, varie comme le sinus du double de l'excès de la longitude du second satellite, sur celle du troisième. Ainsi le second satellite éprouve de la part du premier, une perturbation semblable à celle qu'il fait éprouver au troisième; et il éprouve de la part du troisième, une perturbation semblable à celle qu'il fait éprouver au premier. Ces deux inégalités se confondent dans une seule, en vertu des rapports qui existent entre les moyens mouvemens et les longitudes moyennes des trois premiers satellites, et suivant lesquels le moyen mouvement du premier, plus deux fois celui du troisième, est égal à trois fois celui du second; et la longitude moyenne du premier satellite, moins trois fois celle du second, plus deux fois celle du troisième, est constamment égale à la demi-circonférence. Mais ces rapports subsisteront-ils toujours, ou ne sont-ils qu'approchés; et les deux inégalités du second satellite, aujourd'hui confondues, se sépareront-elles dans la suite des temps? C'est ce que la théorie va nous apprendre.

L'approximation avec laquelle les Tables donnaient les rapports précédens, me fit soupçonner qu'ils sont rigoureux, et que les petites quantités dont elles s'en éloignaient encore, dépendaient des erreurs dont elles étaient susceptibles. Il était contre toute vraisemblance, de supposer que le hasard a placé originairement les trois premiers satellites, aux distances et dans les positions convenables à ces rapports, et il était extrêmement probable qu'ils sont dus à une cause particulière; je cherchai donc cette cause dans l'action mutuelle des satellites. L'examen approfondi de cette action, me fit voir qu'elle a rendu ces rapports, rigoureux; d'où je conclus qu'en déterminant de nouveau, par la discussion d'un très-grand nombre d'observations éloignées entre elles, les moyens mouvemens et les longitudes moyennes des trois premiers satellites, on trouverait qu'ils approchent encore plus de ces rapports auxquels les Tables doivent être rigoureusement assujéties. J'ai eu la satisfaction de voir cette conséquence de la théorie, confirmée avec une précision remarquable, par les recherches que Delambre a faites sur les satellites de Jupiter. Il n'est pas nécessaire que ces rapports aient

mens et les longitudes des trois premiers satellites s'en soient peu écartés, et alors l'action mutuelle de ces satellites, a suffi pour les établir et pour les maintenir en rigueur. Mais la petite différence entre eux et les rapports primitifs, a donné lieu à une inégalité d'une étendue arbitraire, qui se partage entre les trois satellites, et que j'ai désignée sous le nom de libration. Les deux constantes arbitraires de cette inégalité, remplacent ce que les deux rapports précédens sont disparaître d'arbitraire, dans les moyens mouvemens et dans les époques des longitudes moyennes des trois premiers satellites; car le nombre des arbitraires que renferme la théorie d'un système de corps, est nécessairement sextuple du nombre de ces corps. La discussion des observations n'ayant point sait reconnaître cette inégalité; elle doit être sort petite et même insensible.

Les rapports précédens subsisterent toujours, quoique les moyens mouvemens des satellites soient assujétis à des équations séculaires analogues à celle du mouvement de la lune. Ils subsisteraient encore dans le cas même où ces mouvemens seraient altérés par la résistance d'un milieu éthéré, ou par d'autres causes dont les effets ne seraient sensibles qu'à la longue. Dans tous ces cas, les équations séculaires de ces mouvemens se coordonnent entre elles par l'action réciproque des satellites, de manière que l'équation séculaire du premier, plus deux fois celle du troisième, est égale à trois fois celle du second : leurs inégalités mêmes qui croissent avec une extrême lenteur, approchent d'autant plus de se coordonner ainsi. que leurs périodes sont plus longues. Cette libration par laquelle les mouvemens des trois premiers satellites se balancent dans l'espace, stivant les lois que nous venons d'énoncer, s'étend à leurs mouvemens de rotation, si, comme les observations l'indiquent, ces mouvemens sont égaux à ceux de révolution. L'attraction de Jupiter maintient alors cette égalité, en donnant aux mouvemens de rotation, les mêmes équations séculaires qui affectent les mouvemens de révolution. Ainsi, les trois premiers satellites de Jupiter forment un système de corps liés entre eux par les inégalités et par les rapports précédens que leur action mutuelle maintiendra sans cesse,

à moins qu'une cause étrangère ne vienne déranger brusquement leurs mouvemens et leurs positions respectives. Telle serait une comète qui traversant ce système, comme la première comète de 1770 paraît l'avoir fait, choquerait l'un de ces corps. Il est vraisemblable que de pareilles rencontres ont eu lieu dans l'immensité des siècles écoulés depuis l'origine du système planétaire : le choc d'une comète dont la masse eût été seulement la cent millième partie de celle de la terre, aurait suffi pour rendre sensible, la libration des satellites. Cette inégalité n'ayant point été reconnue, malgré tous les soins que Delambre a pris pour la démèler dans les observations; on doit en conclure que les masses des comètes qui peuvent avoir rencontré l'un des trois satellites de Jupiter, sont extrêmement petites; ce qui confirme ce que nous ayons déjà observé sur la petitesse des masses des comètes.

Les orbes des satellites éprouvent des changemens analogues aux grandes variations des orbes planétaires: leurs mouvemens sont pareillement assujétis à des équations séculaires semblables à celle de la lune. Le développement de toutes ces inégalités par la suite des temps, fournira les dennées les plus avantageuses pour la détermination des masses des satellites et de l'aplatissement de Jupiter. L'influence considérable de ce dernier élément, sur les mouvemens des nœuds, fixe sa valeur avec plus de précision que les mesures directes. On trouve par ce moyen, le rapport du petit axe de Jupiter au diamètre de son équateur, égal à 0,9368; ce qui diffère très-peu du rapport de seize à dix-sept, que donnent par un milieu, les mesures les plus précises de l'aplatissement de cette planète. Cet accord est une nouvelle preuve que la pesanteur des satellites vers la planète punicipale, se compose des attractions de toutes ses molécules!

L'un des plus curieux résultats de la théorie des satellites de Jupiter, est la connaissance de leurs masses, connaissance que leur petitesse extrême et l'impossibilité de mesurer leurs diamètres semblaient neus interdire. J'ai choisi pour cet objet, les données qui dans l'état notuel de l'Astronamie, m'ont paru les plus avantageuses; et j'ai lieu de penser que les valeurs suivantes que j'en ai conclues, sont fort approchées.

Masses des satellites de Jupiter, celle de la planète étant prise pour unité.

 I. Satellite......
 0,0000173281.

 II. Satellite......
 0,0000252355.

 III. Satellite......
 0,0000884972.

IV. Satellite..... 0,0000426591.

On rectifiera ces valeurs, quand la suite des temps aura fait mieux connaître encore, les variations séculaires des orbites.

Quelle que soit la perfection de la théorie; il reste à l'Astronome, une tâche immense à remplir, pour convertir en Tables, les formules analytiques. Ces formules renferment trente-une constantes indéterminées, savoir, les vingt-quatre arbitraires des douze équations différentielles du mouvement des satellites, les masses de ces astres, l'aplatissement de Jupiter, l'inclinaison de son équateur et la position de ses nœuds. Pour avoir les valeurs de toutes ces inconnues, il fallait discuter un très-grand nombre d'éclipses de chaque satellite, et les combiner de la manière la plus propre à faire ressortir chaque élément. Delambre a exécuté ce travail important, avec le plus grand succès; et ses Tables qui représentent les observations avec l'exactitude des observations mêmes, offrent au navigateur, un moyen sûr et facile pour avoir sur-le-champ, par les éclipses des satellites, et surtout par celles du premier, la longitude des lieux où il atterre. Voici les principaux élémens de la, théorie de chaque satellite, qui résultent de la comparaison que Delambre a faite, de mes formules avec les observations.

L'orbe du premier satellite se meut uniformément avec une inclinaison constante, sur un plan fixe qui passe constamment entre l'équateur et l'orbite de Jupiter, par l'intersection mutuelle de ces deux derniers plans dont l'inclinaison respective est, suivant les observations, égale à 5°,435°a. L'inclinaison de ce plan fixe à l'équateur de Jupiter, n'est que de 20" par la théorie; elle est par conséquent insensible. L'inclinaison de l'orbe du satellite sur ce plan, est pareillement insensible par les observations; ainsi l'on peut, supposer le premier satellite en mouvement sur l'équateur même de Jupiter. On n'a point reconnu d'excentricité propre à son orbe qui seulement, participe un peu des excentricités des orbes du troisième et du quatrième satellite; car en vertu de l'action mutuelle de tous ces corps, l'excentricité propre à chaque orbe, se répand sur les autres, mais plus faiblement, à mesure qu'ils en sont plus éloignés. La seule-inégalité sensible de ce satellite, est celle qui a pour argument, le double de l'excès de la longitude moyenne du premier satellite sur celle du second, et qui produit dans le retour de ses éclipses, l'inégalité de 4371,659: elle est une des données dont j'ai fait usage, pour avoir les masses des satellites; et comme elle n'est due qu'à l'action du second, elle détermine la valeur de sa masse avec beaucoup d'exactitude.

Les éclipses du premier satellite de Jupiter, ont fait découvrir le mouvement successif de la lumière, qu'ensuite le phénomène de l'aberration a mieux fait connaître. Il m'a paru que la théorie de ce satellite étant aujourd'hui perfectionnée, et les observations de ses éclipses étant devenues très-nombreuses; leur discussion devait détermmer la quantité de l'aberration, avec plus de précision encore que l'observation directe. Delambre a bien voulu entreprendre cette discussion à ma prière : il a trouvé 62",5 pour l'aberration entière, valeur exactement la même que Bradley avait conclue de ses observations. Il est satisfaisant de voir un accord aussi parfait entre des résultats tirés de méthodes aussi différentes. Il suit de cet accord, que la vîtesse de la lumière est uniforme dans tout l'espace compris par l'orbe terrestre. En effet, la vîtesse de la lumière, donnée par l'aberration, est celle qui a lieu sur la circonférence de l'orbe terrestre, et qui se combinant avec le mouvement de la terre, produit ce phénomène. La vîtesse de la lumière, conclue des éclipses des satellites de Jupiter, est déterminée par le temps que la lumière emploie à traverser l'orbe terrestre; ainsi, ces deux vîtesses étant les mêmes, la vîtesse de la lumière est uniforme dans toute la longueur du diamètre de l'orbe de la terre. Il résulte même de ces éclipses, que cette vîtesse est uniforme dans l'espace compris par l'orbe de Jupiter; car à raison de l'excentricité de cet orbe, l'effet de la variation de ses rayons vecteurs, est très-sensible sur les éclipses des satellites, et la discussion de ces éclipses a prouvé que cet effet correspond exactement à l'uniformité du mouvement de la lumière.

Si la lumière est une émanation des corps lumineux; l'égalité de la vîtesse de leurs rayons, exige qu'ils soient lancés par chacun d'eux avec une force qui soit la même, et que leurs mouvemens ne soient point sensiblement retardés par les attractions qu'ils éprouvent de la part des corps étrangers. Si l'on fait consister la lumière, dans les vibrations d'un fluide élastique; l'uniformité de sa vîtesse exige que la densité de ce fluide dans toute l'étendue du système planétaire, soit proportionnelle à son ressort. Mais l'extrême simplicité avec laquelle l'aberration des astres et les phénomènes de la réfraction de la lumière en passant d'un milieu dans un autre, s'expliquent, en considérant la lumière comme une émanation des corps lumineux, rend cette hypothèse, au moins très-vraisemblable.

L'orbe du second satellite se meut uniformément avec une inclinaison constante, sur un plan fixe qui passe constamment entre l'équateur et l'orbite de Jupiter, par leur intersection mutuelle, et dont l'inclinaison à cet équateur, est de 201". L'orbe du satellite est incliné de 5152" à son plan fixe, et ses nœuds ont sur ce plan, un mouvement tropique rétrograde, dont la période est de 29ans, 9142 : cette période est une des données qui m'ont servi à déterminer les masses des satellites. L'observation n'a point fait connaître d'excentricité propre à cet orbe; mais il participe un peu des excentricités des orbes du troisième et du quatrième satellite. Les deux inégalités principales du second satellite dépendent des actions du premier et du troisième : le rapport qu'ont entre elles, les longitudes des trois premiers satellites, réunit pour toujours ces inégalités, en une seule dont la période dans le retour des éclipses est de 437i-,659, et dont la valeur est la troisième donnée que j'ai employée à la détermination des masses,

L'orbe du troisième satellite se meut uniformément avec une inclinaison constante, sur un plan fixe qui passe constamment entre l'équateur et l'orbite de Jupiter, par leur intersection mutuelle, et dont l'inclinaison sur cet équateur, est de 931". L'arbe du satellite est incliné de 2284" à son plan fixe, et ses nœuds ont sur ce

plan, un mouvement tropique rétrograde dont la période est de 141 ms,739. Les Astronomes supposaient les orbes des trois premiers satellites, en mouvement sur l'équateur même de Jupiter; mais ils trouvaient une plus petite inclinaison à cet équateur sur l'orbite de la planète, par les éclipses du troisième, que par celles des deux autres. Cette différence dont ils ignoraient la cause, vient de ce que les orbes des satellites ne se meuvent point avec une inclinaison constante, sur cet équateur, mais sur des plans divers et qui lui sont d'autant plus inclinés, que les satellites sont plus éloignés de la planète. La lune nous offre un résultat semblable, comme on l'a vu dans le chapitre précédent : c'est de là que dépend l'inégalité lunaire en latitude, dont la valeur donne l'aplatissement de la terre, plus exactement peut-être, que les mesures des degrés du méridien.

L'excentricité de l'orbe du troisième satellite présente des anomalies singulières dont la théorie m'a fait connaître la cause. Elles dépendent de deux équations du centre, distinctes. L'une propre à cet orbe, se rapporte à un périjove dont le mouvement annuel et sidéral est de 29010": l'autre que l'on peut considérer comme une émanation de l'équation du centre du quatrième satellite, se rapporte au périjove de ce dernier corps. Elle est une des données qui m'ont servi à déterminer les masses. Ces deux équations forment en se combinant, une équation du centre, variable et qui se rapporte à un périjove dont le mouvement n'est pas uniforme. Elles coıncidaient et s'ajoutaient en 1682, et leur somme s'élevait à 2458": en 1777, elles se retranchaient l'une de l'autre, et leur différence n'était que de 949". Wargentin essaya de représenter ces variations, au moyen de deux équations du centre; mais n'ayant pas rapporté l'une d'elles, au périjove du quatrième satellite, il sut contraint par les observations, d'abandonner son hypothèse, et il eut recours à celle d'une équation du centre, variable et dont il détermina les changemens, par les observations, ce qui le conduisit à peu près aux résultats que nous venons d'indiquer.

Enfin, l'orbe du quatrième satellite se meut uniformément avec une inclinaison constante, sur un plan fixe incliné de 4457" à l'équateur de Jupiter, et qui passe par la ligne des nœuds de cet équateur, entre ce dernier plan, et celui de l'orbite de la planète: l'inclinaison de l'orbe du satellite à son plan fixe est de 2772", et ses nœuds sur ce plan, ont un mouvement tropique rétrograde dont la période est de 531 ans. En vertu de ce mouvement, l'inclinaison de l'orbe du quatrième satellite sur l'orbite de Jupiter, varie sans cesse. Parvenue à son minimum vers le milieu du dernier siècle, elle a été à peu près stationnaire, et d'environ 2°,7 depuis 1680 jusqu'en 1760: et dans cet intervalle, ses nœuds sur l'orbite de Jupiter ont eu un mouvement annuel direct de 8' à peu près. Cette circonstance que l'observation a présentée, a été saisie par les Astronomes qui l'ont employée long-temps avec succès dans les Tables de ce satellite : elle est une suite de la théorie qui donne l'inclinaison et le mouvement du nœud, à très-peu près les mêmes que les Astronomes avaient trouvés par la discussion des éclipses. Mais dans ces dernières années, l'inclinaison de l'orbe a pris un accroissement très-sensible dont il eût été difficile de connaître la loi, sans le secours de l'analyse. Il est curieux de voir sortir ainsi des formules analytiques, ces phénomènes singuliers que l'observation a fait entrevoir, mais qui résultant de la combinaison de plusieurs inégalités simples, sont trop compliqués pour que les Astronomes en aient pu découvrir les lois. L'excentricité de l'orbe du quatrième satellite, est beaucoup plus grande que celles des autres orbes, son périjove a un mouvement annuel direct de 7959": c'est la cinquième donnée dont j'ai fait usage pour déterminer les masses.

Chaque orbe participe un peu du mouvement des autres. Les plans fixes auxquels nous les avons rapportés, ne le sont pas rigoureusement : ils se meuvent très-lentement avec l'équateur et l'orbite de Jupiter, en passant toujours par l'intersection mutuelle de ces derniers plans, et en conservant sur l'équateur de Jupiter, des inclinaisons qui, quoique variables, sont entre elles et avec l'inclinaison de l'orbite de la planète sur son équateur, dans un rapport constant.

Tels sont les principaux résultats de la théorie des satellites de Jupiter, comparée aux observations nombreuses de leurs éclipses. Les observations de l'entrée et de la sortie de leurs ombres sur le disque de Jupiter, répandraient beaucoup de lumière sur plusieurs élémens de cette théorie. Ce genre d'observations, jusqu'ici trop négligé par les Astronomes, me paraît devoir fixer leur attention; car il semble que les contacts intérieurs des ombres doivent déterminer l'instant de la conjonction, avec plus d'exactitude encore que les éclipses. La théorie des satellites est maintenant assez avancée, pour que ce qui lui manque, ne puisse être déterminé que par des observations très-précises; il devient donc nécessaire d'essayer de nouveaux moyens d'observation, ou du moins, de s'assurer que ceux dont on fait usage, méritent la préférence.

CHAPITRE VIL

Des satellites de Saturne et d'Uranus.

L'EXTRÊME difficulté des observations des satellites de Saturne rend leur théorie si imparfaite, que l'on connaît à peine avec quelque précision, leurs révolutions et leurs distances moyennes au centre de cette planète; il est donc inutile jusqu'à présent, de considérer leurs perturbations. Mais la position de leurs orbes, présente un phénomène digne de l'attention des Géomètres et des Astronomes. Les orbes des six premiers satellites paraissent être dans le plan de l'anneau, tandis que l'orbe du septième s'en écarte sensiblement. Il est naturel de penser que cela dépend de l'action de Saturne qui, en vertu de son aplatissement, retient les six premiers orbes et ses anneaux, dans le plan de son équateur. L'action du soleil tend à les en écarter; mais cet écart croissant très-rapidement et à peu près comme la cinquième puissance du rayon de l'orbe, il ne devient sensible que pour le dernier satellite. Les orbes des satellites de Saturne se meuvent comme ceux des satellites de Jupiter, sur des plans qui passent constamment entre l'équateur et l'orbite de la planète, par leur intersection mutuelle, et qui sont d'autant plus inclinés à cet équateur, que les satellites sont plus éloignés de Saturne. Cette inclinaison est considérable relativement au dernier satellite, et d'environ 24°,0, si l'on s'en rapporte aux observations déjà faites; l'orbe du satellite est incliné de 16,96 à ce plan, et le mouvement annuel de ses nœuds sur le même plan est de 940". Mais ces observations étant fort incertaines; ces résultats ne peuvent être qu'une approximation très-imparfaite.

Nous sommes moins instruits encore à l'égard des satellites d'Uranus. Il paraît seulement d'après les observations d'Herschell, qu'ils se meuvent tous sur un même plan presque perpendiculaire à celui de l'orbite de la planète; ce qui indique évidemment une position semblable dans le plan de son équateur. L'analyse fait voir que l'aplatissement de la planète, combiné avec l'action des satellites, peut maintenir à très-peu près dans ce plan, leurs orbes divers. Voilà tout ce que l'on peut dire sur ces astres qui, par leur éloignement et leur petitesse, se refuseront long-temps à des recherches plus étendues.

CHAPITRE VIII.

De la figure de la terre et des planètes, et de la loi de la pesanteur à leur surface.

Nous avons exposé dans le premier livre, ce que les observations ont appris sur la figure de la terre et des planètes : comparons ces résultats, avec ceux de la pesanteur universelle.

La gravité vers les planètes, se compose des attractions de toutes leurs molécules. Si leurs masses étaient fluides et sans mouvement de rotation; leur figure et celles de leurs différentes couches seraient sphériques, les couches les plus voisines du centre étant les plus denses. La pesanteur à la surface extérieure et au-dehors à une distance quelconque, serait exactement la même que si la masse entière de la planète était réunie à son centre de gravité; propriété remarquable en vertu de laquelle le soleil, les planètes, les comètes et les satellites agissent à très-peu près les uns sur les autres, comme autant de points matériels.

A de grandes distances, l'attraction des molécules d'un corps de figure quelconque, les plus éloignées du point attiré, et celle des molécules les plus voisines, se compensent de manière que l'attraction totale est à peu près la même que si ces molécules étaient réunies à leur centre de gravité; et si l'on considère comme une très-petite quantité du premier ordre, le rapport des dimensions du corps à sa distance au point attiré; ce résultat est exact aux quantités près du second ordre. Mais il est rigoureux pour la sphère; et pour un sphéroïde qui en diffère très-peu, l'erreur est du même ordre que le produit de son excentricité, par le carré du rapport de son rayon à sa distance au point qu'il attire.

La propriété dont jouit la sphère, d'attirer comme si sa masse était réunie à son centre, contribue donc à la simplicité des mouvemens célestes. Elle ne convient pas exclusivement à la loi de la nature : elle appartient encore à la loi de l'attraction proportionnelle à la simple distance, et elle ne peut convenir qu'aux lois formées par l'addition de ces deux lois simples. Mais de toutes les lois qui rendent la pesanteur nulle à une distance infinie, celle de la nature est la seule dans laquelle la sphère a cette propriété.

Suivant cette loi, un corps placé au - dedans d'une couche sphérique partout de la même épaisseur, est également attiré de toutes parts; ensorte qu'il resterait en repos au milieu des attractions qu'il éprouve. La même chose a lieu au-dedans d'une couche elliptique dont les surfaces intérieure et extérieure sont semblables et semblablement situées. En supposant donc que les planètes soient des sphères homogènes, la pesanteur dans leur intérieur diminue comme la distance à leur centre; car l'enveloppe extérieure au corps attiré, ne contribue point à sa pesanteur qui n'est ainsi produite que par l'attraction d'une sphère d'un rayon égal à la distance de ce corps, au centre de la planète; or cette attraction est proportionnelle à la masse de la sphère, divisée par le carré de son rayon, et la masse est comme le cube de ce même rayon; la pesanteur du corps est donc proportionnelle à ce rayon. Mais les couches des planètes étant probablement plus denses à mesure qu'elles sont plus près du centre; la pesanteur au-dedans diminue dans un moindre rapport, que dans le cas de leur homogénéité.

Le mouvement de rotation des planètes, les écarte un peu de la figure sphérique: la force centrifuge due à ce mouvement, les rensie à l'équateur et les aplatit aux pôles. Considérons d'abord les effets de cet aplatissement dans le cas très-simple où la terre étant une masse fluide homogène, la gravité serait dirigée vers son centre et réciproque au carré de la distance à ce point. Il est facile de prouver qu'alors le sphéroïde terrestre est un ellipsoïde de révolution; car si l'on conçoit deux colonnes fluides se communiquant à son centre et aboutissant, l'une au pôle, et l'autre à un point quelconque de sa surface; il est clair que ces deux colonnes doivent se faire mntuellement équilibre. La force centrifuge n'altère point le poids

de la colonne dirigée au pôle : elle diminue le poids de l'autre colonne. Cette force est nulle au centre de la terre: à la surface, elle est proportionnelle au rayon du parallèle terrestre, ou à fort peu près, au cosinus de la latitude; mais elle n'est pas employée tout entière à diminuer la gravité. Ces deux forces faisant entre elles un angle égal à la latitude, la force centrifuge décomposée suivant la direction de la gravité, est affaiblie, dans le rapport du cosinus de cet angle, au rayon; ainsi à la surface de la terre, la force centrifuge diminue la gravité sur un parallèle quelconque, du produit de la force centrifuge à l'équateur, par le carré du cosinus de la latitude; la valeur moyenne de cette diminution dans la longueur de la colonne fluide est donc la moitié de ce produit; et comme la force centrifuge est 1 de la gravité à l'équateur, cette valeur est 1 de la gravité multipliée par le carré du cosinus de la latitude. Il faut pour l'équilibre, que la colonne par sa longueur, compense la diminution de sa pesanteur; elle doit donc surpasser la colonne du pôle, d'un 578 de sa grandeur multipliée par le carré du même cosinus. Ainsi les accroissemens des rayons terrestres, du pôle à l'équateur, sont proportionnels à ce carré; d'où il est facile de conclure que la terre est alors un ellipsoïde de révolution dans lequel l'axe des pôles est à celui de l'équateur, comme 577 est à 578.

Il est visible que l'équilibre de la masse fluide subsisterait encore, en supposant qu'une partie vienne à se consolider, pourvu que la force de la gravité reste la même.

Pour déterminer la loi de la pesanteur à la surface de la terre; nous observerons que la gravité à un point quelconque de cette surface, est plus petite qu'au pôle, à raison du plus grand éloignement du centre : cette diminution est à très-peu près le double de l'accroissement du rayon terrestre; elle est donc égale au produit d'un 289^{ième} de la gravité, par le carré du cosinus de la latitude. La force centrifuge diminue encore la pesanteur, de la même quantité; ainsi, par la réunion de ces deux causes, la diminution de la pesanteur du pôle à l'équateur, est égale à 0,00694 multiplié par le carré du cosinus de la latitude; la gravité à l'équateur, étant prise pour unité.

On a vu dans le premier livre, que les mesures des degrés des

méridiens donnent à la terre, un aplatissement plus grand que 1778; et que les mesures du pendule indiquent une diminution dans la pesanteur, des pôles à l'équateur, moindre que 0,00694, et égale à 0,005515; les mesures des degrés et du pendule concourent donc à faire voir que la gravité n'est pas dirigée vers un seul point; ce qui confirme à posteriori, ce que nous avons démontré précédemment, savoir, qu'elle se compose des attractions de toutes les molécules de la terre.

Dans ce cas, la loi de la gravité dépend de la figure du sphéroïde terrestre, qui dépend elle-même de la loi de la gravité. Cette dépendance mutuelle de deux quantités inconnues, rend très-difficile, la recherche de la figure de la terre. Heureusement, la figure elliptique, la plus simple de toutes les figures rentrantes, après la sphère, satisfait à l'équilibre d'une masse fluide douée d'un mouvement de rotation, et dont toutes les molécules s'attirent réciproquement au carré des distances. Newton se contenta de le supposer, et en partant de cette hypothèse et de celle de l'homogénéité de la terre, il trouva que les deux axes de cette planète sont entre eux, comme 229 est à 230.

Il est facile d'en conclure la loi de la variation de la pesanteur sur la terre. Pour cela, considérons différens points situés sur un même rayon mené du centre, à la surface d'une masse fluide homogène en équilibre. Toutes les couches elliptiques semblables qui recouvrent l'un quelconque d'entre eux, ne contribuent point à sa pesanteur; et la résultante des attractions qu'il éprouve, est uniquement due à l'attraction d'un sphéroïde elliptique semblable au sphéroïde entier, et dont la surface passe par ce point. Les molécules semblables et semblablement placées, de ces deux sphéroïdes, attirent respectivement ce point, et le point correspondant de la surface extérieure, proportionnellement aux masses divisées par les carrés des distances; les masses sont comme les cubes des dimensions semblables des deux sphéroïdes, et les carrés des distances sont comme les carrés des mêmes dimensions; les attractions des molécules semblables sont donc proportionnelles à ces dimensions; d'où il suit que les attractions entières des deux sphéroïdes, sont dans le même rapport, et leurs directions sont

parailèles. Les forces centrifuges des deux points que nous considérons, sont encore proportionnelles aux mêmes dimensions; leurs pesanteurs qui sont les résultantes de toutes ces forces, sont donc comme leurs distances au centre de la masse fluide.

Maintenant, si l'on conçoit deux colonnes fluides dirigées du centre du sphéroïde, l'une au pôle, et l'autre à un point quelconque de la surface; il est clair que si le sphéroïde est très-peu aplati. les pesanteurs décomposées suivant les directions de ces colonnes, seront à très-peu près les mêmes que les pesanteurs totales; en partageant donc les longueurs des colonnes, dans le même nombre de parties infiniment petites proportionnelles à ces longueurs, les poids des parties correspondantes seront entre eux, comme les produits des longueurs des colonnes par les pesanteurs aux points de la surface, où elles aboutissent; les poids entiers de ces colonnes fluides seront donc dans le même rapport. Ces poids doivent être égaux pour l'équilibre; les pesanteurs à la surface, sont par conséquent, réciproques aux longueurs des colonnes. Ainsi, le rayon de l'équateur surpassant d'un 230 les, celui du pôle; la pesanteur au pôle doit surpasser d'un 230ième, la pesanteur à l'équateur.

Cela suppose que la figure elliptique satisfait à l'équilibre d'une masse fluide homogène: c'est ce que Maclaurin a démontré par une très-belle méthode de laquelle il résulte que l'équilibre est alors rigoureusement possible, et que si l'ellipsoïde est très-peu aplati, l'ellipticité est égale à cinq quarts du rapport de la force centrifuge à la pesanteur, à l'équateur.

Au même mouvement de rotation, répondent deux figures différentes d'équilibre; mais l'équilibre ne peut pas subsister avec tous ces mouvemens. La plus petite durée de rotation d'un fluide homogène en équilibre, de même densité que la moyenne densité de la terre, est de oi,1009; et cette limite varie réciproquement à la racine carrée de la densité. Quand la rotation est plus rapide, la masse fluide s'aplatit à ses pôles; par là, sa durée de rotation devient moindre et tombe dans les limites convenables à l'état d'équilibre. Après un grand nombre d'oscillations, le fluide en vertu des frottemens et des résistances qu'il éprouve, se fixe à cet état qui

est unique et déterminé par le mouvement primitif; et quelles que soient les forces primitives des molécules, l'axe mené par le centre de gravité de la masse fluide, et par rapport auquel le moment des forces était un maximum à l'origine, devient l'axe de rotation.

Les résultats précédens fournissent un moyen simple de vérifier l'hypothèse de l'homogénéité de la terre. L'irrégularité des degrés mesurés des méridiens, laisse trop d'incertitude sur l'aplatissement de la terre, pour reconnaître s'il est tel à peu près, que l'exige cette hypothèse; mais l'accroissement assez régulier de la pesanteur, de l'équateur aux pôles, peut nous éclairer sur cet objet. En prenant pour unité, la pesanteur à l'équateur; son accroissement au pôle est 0,00435, dans le cas de l'homogénéité de la terre: par les observations du pendule, cet accroissement est 0,005515; la terre n'est donc point homogène. Il est en effet, naturel de penser que la densité de ses couches augmente de la surface au centre : il est même nécessaire pour la stabilité de l'équilibre des mers, que leur densité soit plus petite que la moyenne densité de la terre; autrement, leurs eaux agitées par les vents et par d'autres causes, sortiraient souvent de leurs limites, pour inonder les continens.

L'homogénéité de la terre étant ainsi exclue par les observations : il faut pour déterminer sa figure, considérer la mer comme recouvrant un noyau dont les couches diminuent de densité, du centre à la surface. Clairaut a démontré dans son bel ouvrage sur la figure de la terre, que l'équilibre est encore possible, en supposant une figure elliptique, à sa surface et aux couches du noyau intérieur. Dans les hypothèses les plus vraisemblables sur la loi des densités et des ellipticités de ces couches; l'aplatissement de la terre est moindre que dans le cas de l'homogénéité, et plus grand que si la gravité était dirigée vers un seul point : l'accroissement de la pesanteur de l'équateur aux pôles, est plus grand que dans le premier cas, et plus petit que dans le second. Mais il existe entre l'accroissement total de la pesanteur prise pour unité à l'équateur, et l'ellipticité de la terre, ce rapport remarquable; savoir, que dans toutes les hypothèses sur la constitution du poyau que recouyre la mer, autant l'ellipticité de la terre entière est au-dessous

de celle qui a lieu dans le cas de l'homogénéité, autant l'accroissement total de la pesanteur est au-dessus de celui qui a lieu dans le même cas, et réciproquement; ensorte que la somme de cet accroissement et de l'ellipticité est toujours la même et égale à cinq fois la moitié du rapport de la force centrifuge à la pesanteur à l'équateur, ce qui pour la terre, revient à 115.2.

En supposant donc la figure des couches du sphéroïde terrestre. elliptique; l'accroissement de ses rayons et de la pesanteur, et la diminution des degrés des méridiens, des pôles à l'équateur. sont proportionnels au carré du cosinus de la latitude; et ils sont liés à l'ellipticité de la terre, de manière que l'accroissement total des rayons est égal à cette ellipticité; la diminution totale des degrés est égale à l'ellipticité multipliée par trois fois le degré de l'équateur; et l'accroissement total de la pesanteur est égal à la pesanteur à l'équateur, multipliée par l'excès de $\frac{1}{115,2}$ sur cette ellipticité. Ainsi, l'on peut déterminer l'ellipticité de la terre, soit par les mesures des degrés, soit par les observations du pendule. L'ensemble de ces observations donne 0,005515 pour l'accroissement de la pesanteur de l'équateur aux pôles; en retranchant cette quantité de $\frac{1}{115,2}$, on a $\frac{1}{515,8}$ pour l'aplatissement de la terre. Si l'hypothèse d'une figure elliptique est dans la nature, cet aplatissement doit satisfaire aux mesures des degrés; mais il y suppose, au contraire, des erreurs considérables; et cela joint à la difficulté d'assujétir toutes ces mesures à un même méridien elliptique, semble indiquer une figure de la terre plus composée qu'on ne l'avait cru d'abord ; ce qui ne paraîtra point étonnant, si l'on considère l'irrégularité de la profondeur des mers, l'élévation des continens et des îles au-dessus de leur niveau, la hauteur des montagnes, et l'inégale densité des eaux et des diverses substances qui sont à la surface de cette planète.

Pour embrasser avec la plus grande généralité, la théorie de la figure de la terre et des planètes; il fallait déterminer l'attraction des sphéroïdes peu différens de la sphère, et formés de couches variables de figure et de densité suivant des lois quelconques; il

fallait encore déterminer la figure qui convient à l'équilibre d'uni fluide répandu à leur surface; car on doit imaginer les planètes. recouvertes comme la terre, d'un fluide en équilibre; autrement, leur figure serait entièrement arbitraire. D'Alembert a donné pour cet objet, une méthode ingénieuse qui s'étend à un grand nombre de cas; mais elle manque de cette simplicité si desirable dans des recherches aussi compliquées, et qui en fait le principal mérite. Une équation remarquable aux différences partielles, et relative aux attractions des sphéroïdes, m'a conduit sans le secours des intégrations, et uniquement par des différentiations, aux expressions générales des rayons des sphéroïdes, de leurs attractions sur des points quelconques placés dans leur intérieur, à leur surface ou au-dehors, des conditions de l'équilibre des fluides qui les recouvrent, de la loi de la pesanteur et de la variation des degrés à la surface de ces fluides. Toutes ces quantités sont liées les unes aux autres, par des rapports très-simples; et il en résulte un moyen facile de vérifier les hypothèses que l'on peut faire pour représenter, soit les variations observées de la pesanteur, soit les mesures des degrés des méridiens. Ainsi Bouguer, dans la vue de représenter les degrés mesurés en Laponie, en France et à l'équateur, ayant supposé que la terre est un sphéroïde de révolution sur lequel l'accroissement des degrés du méridien, de l'équateur aux pôles, est proportionnel à la quatrième puissance du sinus de la latitude; on trouve que cette hypothèse ne peut pas satisfaire à l'accroissement de la pesanteur, de l'équateur à Pello, accroissement qui, suivant les observations, est égal à quarante-cinq dixmillièmes de la pesanteur totale, et qui n'en serait que vingt-sept dix-millièmes, dans cette hypothèse.

Les expressions dont je viens de parler, donnent une solution directe et générale du problème qui consiste à déterminer la figure d'une masse fluide en équilibre, en la supposant douée d'un mouvement de rotation, et composée d'une infinité de fluides de densités quelconques, dont toutes les molécules s'attirent en raison des masses, et réciproquement au carré des distances. Legendre avait déjà résolu ce problème par une analyse fort ingénieuse, en supposant la masse homogène. Dans le cas général, le fluide prend

nécessairement la figure d'un ellipsoïde de révolution dont toutes les couches sont elliptiques et diminuent de densité, tandis que leur ellipticité croît du centre à la surface. Les limites de l'aplatissement de l'ellipsoïde entier sont 5 et 1 du rapport de la force centrifuge à la pesanteur à l'équateur; la première limite étant relative à l'homogénéité de la masse, et la seconde se rapportant au cas où les couches infiniment voisines du centre étant infiniment denses, toute la masse du sphéroïde peut être considérée comme étant réunie à ce point. Dans ce dernier cas, la pesanteur serait dirigée vers un seul point, et réciproque au carré des distances; la figure de la terre serait donc celle que nous avons déterminée ci-dessus : mais dans le cas général, la ligne qui détermine la direction de la pesanteur, depuis le centre jusqu'à la surface du sphéroïde, est une courbe dont chaque élément est perpendiculaire à la couche qu'il traverse.

Il est très-remarquable que les variations observées des longueurs du pendule, suivent assez exactement la loi du carré du cosinus de la latitude, dont les variations des degrés mesurés des méridiens s'écartent d'une manière sensible. La théorie générale des attractions des sphéroïdes en équilibre, donne une explication fort simple de ce phénomène : elle nous montre que les termes qui, dans la valeur du rayon terrestre, s'éloignent de cette loi, deviennent plus sensibles dans l'expression de la pesanteur, et plus sensibles encore dans l'expression des degrés, où ils peuvent acquérir d'assez grandes valeurs, pour produire le phénomène dont il s'agit. Cette théorie nous apprend encore que les limites de l'accroissement total de la pesanteur prise pour unité à l'équateur, sont les produits de 2 et de 🛂, par le rapport de la force centrifuge à la pesanteur; la première limite étant relative au cas où les couches seraient infiniment denses au centre, et la seconde se rapportant à l'homogénéité de la terre. L'accroissement observé tombant entre ces limites, indique dans les couches du sphéroïde terrestre, une plus grande densité, à mesure qu'elles approchent du centre, ce qui est conforme aux lois de l'hydrostatique; ainsi la théorie satisfait aux observations, aussi bien qu'on peut le desirer, vu l'ignorance où nous sommes, de la constitution intérieure de la terre.

Il résulte de cet accord, que dans le calcul des variations de la pesanteur et des parallaxes, on peut supposer aux méridiens terrestres, une figure elliptique dont l'aplatissement est l'excès de la fraction $\frac{1}{115,2}$, sur l'accroissement total de la pesanteur, de l'équateur aux pôles.

Le rayon mené du centre de gravité du sphéroïde terrestre, à sa surface sur le parallèle dont le carré du sinus de latitude est ½, détermine la sphère de même masse que la terre, et d'une densité égale à sa densité moyenne; ce rayon est de 6369809 mètres, et la gravité sur ce parallèle, est la même qu'à la surface de cette sphère,

Mais quel est le rapport de la moyenne densité de la terre, à celle d'une substance connue de sa surface? L'effet de l'attraction des montagnes sur les oscillations du pendule, et sur la direction du fil à-plomb, peut nous conduire à la solution de ce problème intéressant. A la vérité, les plus hautes montagnes sont toujours fort petites par rapport à la terre; mais nous pouvons approcher fort près, du centre de leur action, et cela joint à la précision des observations modernes, doit rendre leurs effets sensibles. Les montagnes très-élevées du Pérou, semblaient propres à cet objet: Bouguer ne négligea point une observation aussi importante, dans son voyage entrepris pour la mesure des degrés du méridien à l'équateur. Mais ces grands corps étant volcaniques et creux dans leur intérieur, l'effet de leur attraction s'est trouvé beaucoup moindre que celui auquel on devait s'attendre à raison de leur grosseur, Cependant, il a été sensible; la diminution de la pesanteur, au sommet du Pichincha, aurait été 0,00149, sans l'attraction de la montagne, et elle n'a été observée que de 0,00118: l'effet de la déviation du fil à - plomb, par l'action d'une autre montagne, a surpassé 20". Maskeline a mesuré depuis, avec un soin extrême, un effet semblable produit par l'action d'une montagne d'Ecosse ; il en résulte que la moyenne densité de la terre est environ double de celle de la montagne, et quatre ou cinq fois plus grande que celle de l'eau commune. Cette curieuse observation mérite d'être répétée sur différentes montagnes dont la

constitution intérieure soit bien connue. Cavendish a déterminé cette densité, par l'attraction de deux globes métalliques d'un grand diamètre, et qu'il est parvenu à rendre sensible, au moyen d'un procédé fort ingénieux. Il résulte de ses expériences, que la densité moyenne de la terre, est à celle de l'eau, à fort peu près dans le rapport de onze à deux; ce qui s'accorde avec le rapport précédent, aussi bien qu'on doit l'attendre d'observations et d'expériences aussi délicates.

Appliquons la théorie précédente, à Jupiter. La force centrifuge due au mouvement de rotation de cette planète, est à fort peu près de la pesanteur à son équateur; du moins, si l'on adopte la distance du quatrième satellite, à son centre, donnée dans le second livre. Si Jupiter était homogène, on aurait le diamètre de son équateur, en ajoutant à son petit axe pris pour unité, cinq quarts de la fraction précédente; ces deux axes seraient donc dans le rapport de 10 à 9,06. Suivant les observations, leur rapport est celui de 10 à 9,43; Jupiter n'est donc pas homogène. En le supposant formé de couches dont les densités diminuent du centre, à la surface; son ellipticité doit être comprise entre 1/14 et 5/48. L'ellipticité observée tombant dans ces limites, nous prouve l'hétérogénéité de ses couches, et par analogie, celle des couches du sphéroïde terrestre, déjà reconnue par les mesures du pendule, et qui a été ·confirmée par les inégalités de la lune, dépendantes de l'aplatissement de la terre.

CHAPITRE IX.

De la figure de l'anneau de Saturne.

L'Anneau de Saturne est, comme on l'a vu dans le premier livre, formé de deux anneaux concentriques, d'une très-mince épaisseur. Par quel mécanisme, ces anneaux se soutiennent-ils autour de cette planète? Il n'est pas probable que ce soit par la simple adhérence de leurs molécules; car alors, leurs parties voisines de Saturne, sollicitées par l'action toujours renaissante de la pesanteur, se seraient à la longue, détachées des anneaux qui, par une dégradation insensible, auraient fini par se détruire, ainsi que tous les ouvrages de la nature, qui n'ont point eu les forces suffisantes pour résister à l'action des causes étrangères. Ces anneaux se maintiennent donc sans effort, et par les seules lois de l'équilibre: mais il faut pour cela, leur supposer un mouvement de rotation autour d'un axe perpendiculaire à leur plan, et passant par le centre de Saturne; afin que leur pesanteur vers la planète, soit balancée par leur force centrifuge due à ce mouvement.

Imaginons un fluide homogène, répandu en forme d'anneau, autour de Saturne; et voyons quelle doit être sa figure, pour qu'il soit en équilibre, en vertu de l'attraction mutuelle de ses molécules, de leur pesanteur vers Saturne, et de leur force centrifuge. Si par le centre de la planète, on fait passer un plan perpendiculaire à la surface de l'anneau; la section de l'anneau, par ce plan, est ce que je nomme courbe génératrice. L'analyse fait voir que si la largeur de l'anneau est peu considérable par rapport à sa distance au centre de Saturne; l'équilibre du fluide est possible, quand la courbe génératrice est une ellipse dont le grand axe est dirigé vers le centre de la planète. La durée de la rotation de

l'anneau, est à peu près la même que celle de la révolution d'un satellite mu circulairement à la distance du centre de l'ellipse génératrice, et cette durée est d'environ quatre heures et un tiers, pour l'anneau intérieur. Herschell a confirmé par l'observation, ce résultat auquel j'avais été conduit par la théorie de la pesanteur.

L'équilibre du fluide subsisterait encore, en supposant l'ellipse génératrice, variable de grandeur et de position, dans l'étendue de la circonférence de l'anneau; pourvu que ces variations ne soient sensibles qu'à des distances beaucoup plus grandes que l'axe de la section génératrice. Ainsi, l'anneau peut être supposé d'une largeur inégale dans ses diverses parties: on peut même le supposer à double courbure. Ces inégalités sont indiquées par les apparitions et les disparitions de l'anneau de Saturne, dans lesquelles les deux bras de l'anneau ont présenté des phénomènes différens: elles sont même nécessaires pour maintenir l'anneau en équilibre autour de la planète; car s'il était parfaitement semblable dans toutes ses parties, son équilibre serait troublé par la force la plus légère, telle que l'attraction d'un satellite, et l'anneau finirait par se précipiter sur la planète.

Les anneaux dont Saturne est environné, sont par conséquent, des solides irréguliers d'une largeur inégale dans les divers points de leur circonférence, ensorte que leurs centres de gravité ne coïncident pas avec leurs centres de figure. Ces centres de gravité peuvent être considérés comme autant de satellites qui se meuvent autour du centre de Saturne, à des distances dépendantes des inégalités des anneaux, et avec des vîtesses angulaires égales aux vîtesses de rotation de leurs anneaux respectifs.

On conçoit que ces anneaux sollicités par leur action mutuelle, par celle du soleil et des satellites de Saturne, doivent osciller autour du centre de cette planète, et produire ainsi des phénomènes de lumière, dont la période embrasse plusieurs années. On pourrait croire que ces anneaux obéissant à des forces différentes, ils doivent cesser d'être dans un même plan: mais Saturne ayant un mouvement rapide de rotation, et le plan de son équateur étant le même que celui de l'anneau et des six premiers satellites; son action

maintient dans ce plan, le système de ces différens corps. L'action du soleil et du septième satellite, ne fait que changer la position du plan de l'équateur de Saturne, qui dans ce mouvement, entraîne les anneaux et les orbes des six premiers satellites.

CHAPITRE X.

Des atmosphères des corps célestes.

Un fluide rare, transparent, compressible et élastique, qui environne un corps, en s'appuyant sur lui, est ce que l'on nomme son atmosphère. Nous concevons autour de chaque corps céleste, une pareille atmosphère dont l'existence vraisemblable pour tous, est relativement au soleil et à Jupiter, indiquée par les observations. A mesure que le fluide atmosphérique s'élève au-dessus du corps; il devient plus rare, en vertu de son ressort qui le dilate d'autant plus, qu'il est moins comprimé: mais si les parties de sa surface extérieure, étaient élastiques; il s'étendrait sans cesse, et finirait par se dissiper dans l'espace; il est donc nécessaire que le ressort du fluide atmosphérique diminue dans un plus grand rapport, que le poids qui le comprime, et qu'il existe un état de rareté, dans lequel ce fluide soit sans ressort. C'est dans cet état qu'il doit être à la surface de l'atmosphère.

Toutes les couches atmosphériques doivent prendre, à la longue, un même mouvement angulaire de rotation, commun au corps qu'elles environnent; car le frottement de ces couches, les unes contre les autres et contre la surface du corps, doit accélérer les mouvemens les plus lents, et retarder les plus rapides, jusqu'à ce qu'il y ait entre eux, une parfaite égalité. Dans ces changemens, et généralement dans tous ceux que l'atmosphère éprouve; la somme des produits des molécules du corps et de son atmosphère, multipliées respectivement par les aires que décrivent autour de leur centre commun de gravité, leurs rayons vecteurs projetés sur le plan de l'équateur, reste toujours la même en temps égal. En supposant donc que, par une cause quelconque, l'atmosphère

vienne à se resserrer, ou qu'une partie se condense à la surface du corps; le mouvement de rotation du corps et de l'atmosphère en sera accéléré; car les rayons vecteurs des aires décrites par les molécules de l'atmosphère primitive, devenant plus petits; la somme des produits de toutes les molécules, par les aires correspondantes, ne peut pas rester la même, à moins que la vîtesse de rotation n'augmente.

A la surface extérieure de l'atmosphère, le fluide n'est retenu que par sa pesanteur; et la figure de cette surface est telle que la résultante de la force centrifuge et de la force attractive du corps, lui est perpendiculaire. L'atmosphère est aplatie vers ses pôles, et renflée à son équateur; mais cet aplatissement a des limites, et dans le cas où il est le plus grand, le rapport des axes du pôle et de l'équateur est celui de deux à trois.

L'atmosphère ne peut s'étendre à l'équateur, que jusqu'au point où la force centrifuge balance exactement la pesanteur; car il est clair qu'au-delà de cette limite, le fluide doit se dissiper. Relativement au soleil, ce point est éloigné de son centre, du rayon de l'orbe d'une planète qui ferait sa révolution dans un tems égal à celui de la rotation du soleil. L'atmosphère solaire ne s'étend donc pas jusqu'à l'orbe de Mercure, et par conséquent, elle ne produit point la lumière zodiacale qui paraît s'étendre au-delà même de l'orbe terrestre. D'ailleurs, cette atmosphère dont l'axe des pôles doit être au moins, les deux tiers de celui de son équateur, est fort éloignée d'avoir la forme lenticulaire que les observations donnent à la lumière zodiacale.

Le point où la force centrifuge balance la pesanteur, est d'autant plus près du corps, que le mouvement de rotation est plus rapide. En concevant que l'atmosphère s'étende jusqu'à cette limite, et qu'ensuite elle se resserre et se condense par le refroidissement, à la surface du corps; le mouvement de rotation deviendra de plus en plus rapide, et la plus grande limite de l'atmosphère se rapprochera sans cesse de son centre. L'atmosphère abandonnera donc successivement, dans le plan de son équateur, des zônes fluides qui continueront de circuler autour du corps, puisque leur force centrifuge est égale à leur pesanteur: mais cette égalité n'ayant

point lieu relativement aux molécules de l'atmosphère, éloignées de l'équateur; elles ne cesseront point de lui appartenir. Il est vraisemblable que les anneaux de Saturne sont des zônes pareilles, abandonnées par son atmosphère.

Si d'autres corps circulent autour de celui que nous considérons, ou si lui-même circule autour d'un autre corps; la limite de son atmosphère est le point où sa force centrifuge, plus l'attraction des corps étrangers, balance exactement sa pesanteur: ainsi, la limite de l'atmosphère de la lune est le point où la force centrifuge due à son mouvement de rotation, plus la force attractive de la terre, est en équilibre avec l'attraction de ce satellite. La masse de la lune étant $\frac{1}{68,5}$ de celle de la terre; ce point est éloigné du centre de la lune, d'un neuvième environ, de la distance de la lune à la terre. Si à cette distance, l'atmosphère primitive de la lune n'a point été privée de son ressort; elle se sera portée vers la terre qui a pu ainsi l'aspirer: c'est peut-être la cause pour laquelle cette atmosphère est aussi peu sensible.

CHAPITRE XI.

Du flux et du reflux de la mer.

Di la recherche des lois de l'équilibre des fluides qui recouvrent les planètes, présente de grandes difficultés; celle du mouvement de ces fluides agités par l'attraction des astres, doit en offrir de plus considérables. Aussi Newton qui s'occupa le premier de cet important problème, se contenta de déterminer la figure avec laquelle la mer serait en équilibre sous l'action du soleil et de la lune. Il supposa que la mer prend à chaque instant, cette figure; et cette hypothèse qui facilite extrêmement les calculs, lui donna des résultats conformes sous beaucoup de rapports, aux observations. A la vérité, ce grand Géomètre a eu égard au mouvement de rotation de la terre, pour expliquer le retard des marées, sur les passages du soleil et de la lune au méridien; mais son raisonnement est peu satisfaisant, et d'ailleurs, il est contraire au résultat d'une rigoureuse analyse. L'Académie des Sciences proposa cette matière, pour le sujet d'un prix, en 1740 : les pièces couronnées renferment des développemens de la théorie newtonienne, fondés sur la même hypothèse de la mer en équilibre sous l'action des astres qui l'attirent. Il est visible cependant, que la rapidité du mouvement de rotation de la terre empêche les eaux qui la couvrent, de prendre à chaque instant, la figure qui convient à l'équilibre des forces qui les animent; mais la recherche de ce mouvement combiné avec l'action du soleil et de la lune, offrait des difficultés supérieures aux connaissances que l'on avait alors dans l'analyse. et sur le mouvement des fluides. Aidé des découvertes que l'on a faites depuis sur ces deux objets; j'ai repris ce problème le plus épineux de toute la mécanique céleste. Les seules hypothèses que

ie me suis permises, sont que la mer inonde la terre entière, et qu'elle n'éprouve que de légers obstacles dans ses mouvemens: toute ma théorie est d'ailleurs, rigoureuse et fondée sur les principes du mouvement des fluides. En me rapprochant ainsi de la nature. j'ai eu la satisfaction de voir que mes résultats se rapprochaient des observations, surtout à l'égard du peu de différence qui existe dans nos ports, entre les deux marées d'un même jour, différence qui, suivant la théorie de Newton, serait fort grande. Je suis parvenu à ce résultat remarquable, savoir, que pour faire disparaître cette différence, il suffit de supposer partout à l'océan, la même profondeur. Daniel Bernoulli, dans sa pièce sur le flux et le reflux de la mer, qui partagea le prix de l'Académie des Sciences en 1740, essaya d'expliquer ce phénomène, par le mouvement de rotation de la terre: suivant lui, ce mouvement est trop rapide, pour que les marées puissent s'accommoder aux résultats de la théorie. Mais l'analyse nous montre que cette rapidité n'empêcherait pas les marées d'être fort inégales, si la profondeur de la mer n'était pas uniforme. On voit par cet exemple et par celui de Newton, que je viens de citer, combien on doit se défier des aperçus les plus vraisemblables, quand ils ne sont point vérifiés par un calcul rigoureux.

Les résultats précédens, quoique fort étendus, sont encore restreints par la supposition d'un fluide régulièrement répandu sur la terre, et qui n'éprouve que de très-légères résistances dans ses mouvemens. L'irrégularité de la profondeur de l'océan, la position et la pente des rivages, leurs rapports avec les côtes voisines, les frottemens des eaux contre le fond de la mer, et la résistance qu'elles en éprouvent, toutes ces causes qu'il est impossible de soumettre au calcul, modifient les oscillations de cette grande masse fluide. Tout ce que nous pouvons faire, est d'analyser les phénomènes généraux des marées, qui doivent résulter des forces attractives du soleil et de la lune; et de tirer des observations, les données dont la connaissance est indispensable pour compléter dans chaque port, la théorie du flux et du reflux. Ces données sont autant d'arbitraires dépendantes de l'étendue de la mer, de sa profondeur, et des circonstances locales du port. Nous allons 35

envisager sous ce point de vue, la théorie des oscillations de la mer, et sa correspondance avec les observations.

Considérons d'abord la seule action du soleil sur la mer, et supposons que cet astre se meut uniformément dans le plan de l'équateur, Il est visible que si le soleil animait de forces égales et parallèles, le centre de gravité de la terre et toutes les molécules de la mer; le système entier du sphéroide terrestre et des eaux qui le recouvrent, obéirait à ces forces, d'un mouvement commun. et l'équilibre des eaux ne serait point troublé; cet équilibre n'est donc altéré que par la différence de ces forces, et par l'inégalité de leurs directions. Une molécule de la mer, placée au-dessous du soleil, en est plus attirée que le centre de la terre; elle tend ainsi à se séparer de sa surface; mais elle y est retenue par sa pesanteur que cette tendance diminue. Un demi-jour après, cette molécule se trouve en opposition avec le soleil qui l'attire alors plus faiblement que le centre de la terre; la surface du globe terrestre tend donc à s'en séparer; mais la pesanteur de la molécule l'y retient attachée; cette force est donc encore diminuée par l'attraction solaire, et il est façile de s'assurer que la distance du soleil à la terre, étant fort grande relativement au rayon du globe terrestre, la diminution de la pesanteur dans ces deux cas, est à très-peu près la même. Une simple décomposition de l'action du soleil sur les molécules de la mer, suffit pour faire voir que dans toute autre position, de cet astre par rapport à ces molécules, son action pour troubler leur équilibre, redevient la même après un demijour.

Maintenant, on peut établir comme un principe général de mécanique, que l'état d'un système de corps, dans lequel les conditions primitives du mouvement ont disparu par les résistances qu'il épiquive, est périodique comme les forces qui l'animent; l'état de l'océan doit donc redevenir le même, à chaque intervalle d'un demi-jour, ensorte qu'il y a un flux et un reflux dans cet intervalle.

La loi suivant laquelle la mer s'élève et s'abaisse, peut se déterminer ainsi. Concevons un cercle vertical dont la circonférence représente un demi-jour, et dont le diamètre soit égal à la maréetotale, c'est-à-dire, à la différence des hauteurs de la pleine et de la basse mer; supposons que les arcs de cette circonférence, à partir du point le plus bas, expriment les tems écoulés depuis la basse mer; les sinus verses de ces arcs seront les hauteurs de la mer, qui correspondent à ces temps : ainsi la mer en s'élevant; baigne en temps égal, des arcs égaux de cette circonférence.

Cette loi s'observe exactement au milieu d'une mer libre de tous côtés; mais dans nos ports, les circonstances locales en écartent un peu les marées : la mer y emploie un peu plus de temps à descendre qu'à monter; et à Brest, la différence de ces deux temps est d'environ dix minutes et demie.

Plus une mer est vaste, plus les phénomènes des marées doivent être sensibles. Dans une masse fluide, les impressions que recoit chaque molécule, se communiquent à la masse entière; c'est par là que l'action du soleil, qui est insensible sur une molécule isolée. produit sur l'océan, des effets remarquables. Imaginons un canal courbé sur le fond de la mor, et terminé à l'une de ses extrémités: par un tube vertical qui s'élève au-dessus de sa surface, et dont le prolongement passe par le centre du soleil. L'eau s'élevera dans ce tube, par l'action directe de l'astre qui diminue la pesanteur de ses molécules, et surtout par la pression des molécules rensermées dans le canal, et qui toutes font un effort pour se réunir au-dessous du soleil. L'élévation de l'eau dans le tube, au-dessus du niveau naturel de la mer, est l'intégrale de ces efforts infiniment petits: si la longueur du canal augmente, cette intégrale sera plus grande, parce qu'elle s'étendra sur un plus long espace, et parce qu'il y aura plus de différence dans la direction et dans la quantité des forces dont les molécules extrêmes seront animées. On voit par cet exemple, l'influence de l'étendue des mers sur les phénomènes des marées, et la raison pour laquelle le flux et le reflux sont insensibles dans les petites mers, telles que la mer Noire et la mer Caspienne.

La grandeur des marées dépend beaucoup des circonstances locales: les ondulations de la mer, resserrées dans un détroit, peuvent devenir fort grandes; la réflexion des eaux par les côtes opposées, peut les augmenter encore. C'est ainsi que les marées

généralement fort petites dans les îles de la mer du Sud, sont trésuconsidérables dans nos ports.

Si l'océan recouvrait un sphéroïde de révolution, et s'il n'éprouvait dans ses mouvemens, aucune résistance; l'instant de la pleine mer serait celui du passage du soleil au méridien supérieur ou inférieur; mais il n'en est pas ainsi dans la nature, et les circonstances locales font varier considérablement l'heure des marées, dans des ports même fort voisins. Pour avoir une juste idée de ces variétés, imaginons un large canal communiquant avec la mer. et s'ayançant fort loin dans les terres: il est visible que les ondulations qui ont lieu à son embouchure, se propageront successivement dans toute sa longueur, ensorte que la figure de sa surface sera formée d'une suite de grandes ondes en mouvement, qui se renouvelleront sans cesse, et qui parcourront leur longueur, dans l'intervalle d'un demi-jour. Ces ondes produiront à chaque point du canal, un flux et un reflux qui suivront les lois précédentes; mais les heures du flux retarderont, à mesure que les points seront plus éloignés de l'embouchure. Ce que nous disons d'un canal, peut s'appliquer aux fleuves dont la surface s'élève et s'abaisse par des ondes semblables, malgré le mouvement contraire de leurs eaux. On observe ces ondes, dans toutes les rivières près de leur embouchure : elles se propagent fort loin dans les grands fleuves : et au détroit de Pauxis dans la rivière des Amazones, à quatre-vingts myriamètres de la mer, elles sont encore sensibles.

Considérons présentement l'action de la lune, et supposons que cet astre se meut uniformément dans le plan de l'équateur. Il est clair qu'il doit exciter dans l'océan, un flux et un reflux semblable à celui qui résulte de l'action du soleil, et dont la période est d'un demi-jour lunaire; or on a vu dans le livre précédent, que le mouvement total d'un système agité par de très-petites forces, est la somme des mouvemens partiels que chaque force lui eût imprimés séparément; les deux flux partiels produits par les actions du soleil et de la lune, se combinent donc sans se troubler, et de leur combinaison, résulte le flux que nous observons dans nos ports.

De là naissent les phénomènes les plus remarquables des marées.

L'instant de la marée lunaire n'est pas toujours le même que celui de la marée solaire, puisque leurs périodes sont différentes. Si deux de ces marées coïncident; la marée lunaire suivante retardera sur la marée solaire, de l'excès d'un demi-jour lunaire sur un demijour solaire, c'est-à-dire, de 1752",5. Ces retards s'accumulant de iour en jour; la pleine mer lunaire finira par coïncider avec la basse mer solaire, et réciproquement. Lorsque les deux marées lunaire et solaire coïncident, la marée composée est la plus grande; ce qui produit les grandes marées vers les sysigies. La marée composée est la plus petite, quand la pleine mer relative à l'un des astres. coïncide avec la basse mer relative à l'autre; ce qui produit les petites marées vers les quadratures. Si la marée solaire l'emportait sur la marée lunaire; il est visible que les heures de la plus grande et de la plus petite marée composée, coïncideraient avec l'heure à laquelle la marée solaire arriverait, si elle existait seule. Mais si la marée lunaire l'emporte sur la marée solaire; alors, la plus petite marée composée coincide avec la basse mer solaire, et par conséquent, son heure est à un quart de jour d'intervalle, de l'heure de la plus grande marée composée. Voilà donc un moven simple de reconnaître si la marée lunaire est plus grande ou moindre que la marée solaire. Toutes les observations concourent à faire voir que l'heure des plus petites marées diffère d'un quart de jour, de celle des plus grandes marées: ainsi, la marée lunaire l'emporte sur la marée solaire.

On a vu dans le premier livre, que la valeur moyenne de la plus grande marée totale dans les équinoxes, est de 6^m,249, et que la valeur moyenne de la plus petite^l, est de 3^m,099. Il est aisé d'en conclure après les réductions convenables, que la marée moyenne lunaire, celle qui répond à la partie constante de la parallaxe de la lune, est trois fois plus grande que la marée moyenne solaire, ou, ce qui revient au même, que l'action de la lune pour soulever les eaux de la mer, est triple de celle du soleil.

La grandeur des variations des marées totales près de leur maximum et de leur minimum, est exactement la même par la théorie de la pesanteur, que suivant les observations. Leur accroissement en s'éloignant du minimum, est double de leur

diminution en s'éloignant du maximum, comme les observations l'indiquent.

Puisque la marée lunaire l'emporte sur la marée solaire; la marée composée doit se régler principalement sur la marée lunaire, et dans un temps donné, il doit y avoir autant de marées, que de passages de la lune au méridien supérieur ou inférieur; ce qui est conforme à ce que l'on observe. Mais l'instant de la marée composée doit osciller autour de l'instant de la marée lunaire, suivant une loi dépendante des phases de la lune, et du rapport de son action à celle du soleil. Le premier de ces instans précède le second, depuis la plus grande jusqu'à la plus petite marée : il le suit depuis la plus petite jusqu'à la plus grande marée; ensorte que l'heure moyenne de la marée composée, étant la même que celle de la marée lunaire, le retard moyen des marées d'un jour à l'autre; est de 3505".

Suivant la théorie, comme par les observations, le retard des marées varie ainsi que leur hauteur, avec les phases de la lune. Le plus petit retard coïncide avec la plus grande hauteur: le plus grand retard coïncide avec la plus petite hauteur, et par un accord remarquable, la théorie donne pour ces retards d'un jour à l'autre; a705" et 5207", les mêmes qui résultent des observations. Cet accord prouve à-la-fois la vérité de cette théorie, et l'exactitude du rapport supposé entre les actions de la lune et du soleil. En changeant un peu ce rapport, il serait fort éloigné de satisfaire aux observations des hauteurs et des intervalles des marées, qui le donnent par conséquent, avec beaucoup de précision.

On doit faire ici une remarque importante, de laquelle dépend l'explication de plusieurs phénomènes des marées. Si le sphéroïde que recouvre la mer, était un solide de révolution; les marées partielles auraient lieu à l'instant du passage de leurs astres respectifa au méridien; ainsi, quand la sysigie arriverait à midi, les deux marées lunaire et solaire coïncideraient avec cet instant qui serait celui de la plus grande marée composée. Cette plus grande marée aurait encore lieu, le jour même de la sysigie; si les deux marées partielles suivaient à très-peu près du même intervalle, les passages au méridien, des astres qui les produisent. Mais le mouvement

journalier de la lune dans son orbite, étant considérable; la rapidité de ce mouvement, peut influer sensiblement sur l'intervalle dont cet astre précède le flux lunaire.

Nous aurons une juste idée de ce phénomène, en imaginant comme ci-dessus, un vaste canal communiquant avec la mer, et s'avançant fort loin dans les terres, sous le méridien de son embouchure. Si l'on suppose qu'à cette embouchure, la pleine mer a lieu à l'instant même du passage de l'astre au méridien, et qu'elle emploie vingt-une heures à parvenir à son extrémité; il est visible qu'à ce dernier point, la marée solaire suivra d'une lacure, le passage de cet astre au méridien : mais deux jours lunaires formant 2,070 solaires, le flux lunaire ne suivra que de 50, le passage de la lune au méridien; ensorte qu'il y aura 70 de différence, entre les intervalles dont les flux kunaire et solaire suivront les passages de leurs astres respectifs, au méridien.

Hauit de là que le maximum et le minimum de la marée, b'ont point lieu aux jours même de la sysigie et de la quadrature, mais un ou deux jours après, quand l'intervalle dont la marée lanaire suit le passage de la lume au méridien, ajouté à l'intervalle dont la lune suit le soleil au méridien, est égal à l'intervalle dont la marée solaire suit le passage du soleil au méridien; car alors; les deux marées coincident. Ainsi dans l'exemple précédent, ce maximum et ce minimum qui, à l'embouchure du canal, ont lieu aux jours même de la sysigie et de la quadrature; n'arrivent à son extrémité, que vingt-une heures après.

J'ai trouvé par la comparaison d'un grand nombre d'observations et par diverses méthodes, qu'à Brest, l'intervalle dont la plus grande marée suit la sysigie, est à fort peu près d'un jour et demi. Il en résulte que dans ce port, la marée solaire suit de 1858", le passage du soleil au méridien, et que la marée lunaire suit de 13101", le passage de la lune au méridien. Les heures des marées à Brest sont donc les mêmes qu'à l'extrémité d'un canal qui communiquerait avec la mer; en concevant qu'à son embouchure, les marées partielles ont lieu à l'instant même du passage des astres au méridien, et qu'elles emploient un jour et demi, à parvenir à son extrémité supposée de 18358", plus orientale que

son embouchure. En général, l'observation et la théorie m'ont conduit à regarder chacun de nos ports de France, relativement aux marées, comme l'extrémité d'un canal à l'embouchure duquel les marées partielles ont lieu à l'instant même du passage des astres au méridien, et se transmettent dans un jour et demi, à son extrémité supposée plus orientale que son embouchure, d'une quantité très-différente pour les différens ports.

On peut observer que la différence des intervalles dont les marées partielles suivent le passage des astres qui les produisent, au méridien, ne change point les phénomènes du flux et du reflux. Pour un système d'astres mus uniformément dans le plan de l'équateur, elle ne fait que reculer d'un jour et demi, les phénomènes calculés dans l'hypothèse où ces intervalles seraient nuls.

Plusieurs philosophes ont attribué le retard des phénomènes des marées sur les phases de la lune, au temps que son action emploie à se transmettre à la terre: mais cette hypothèse ne peut pas subsister avec l'inconcevable activité de la force attractive, activité dont on verra des preuves à la fin de ce livre. Ce n'est donc point au temps de cette transmission, mais à celui que les impressions communiquées par les astres à la mer, emploient à parvenir dans nos ports, qu'il faut attribuer ce retard.

La force d'un astre pour soulever une molécule d'eau, placée entre cet astre, et le centre de la terre, est égale à la différence de son action sur ce centre, et sur la molécule; et cette différence est le double du quotient de la masse de l'astre, multipliée par le rayon terrestre, et divisée par le cube de la distance des centres de l'astre et de la terre. Ce quotient relativement au soleil, est, par le chapitre V, la cent soixante et dix-neuvième partie de la pesanteur qui sollicite la lune vers la terre, multipliée par le rapport du rayon terrestre, à la distance de la lune: cette pesanteur est à très-peu près égale à la somme des masses de la terre et de la lune, divisée par le carré de la distance lunaire; la force du soleil pour soulever les eaux de la mer, est donc quatre-vingt-neuf fois et demie, moindre que la somme des masses de la terre et de la lune, multipliée par le rayon terrestre, et divisée par le cube de la distance lunaire, Mais cette force n'est, suivant les observations.

quê le tiers de la force de la lune, qui est égale au double de sa masse multipliée par le rayon terrestre, et divisée par le cube de sa distance; ainsi, la masse de la lune est à la somme des masses de la lune et de la terre, comme 3 est à 179; d'où il suit que cette masse est à fort peu près $\frac{1}{58,7}$ de celle de la terre, si les hauteurs des marées sont exactement proportionnelles aux forces qui les produisent.

Mais l'irrégularité de la profondeur des mers, qui, comme on vient de le voir, produit une différence sensible dans l'intervalle dont les marées lunaire et solaire, suivent les passages de leurs astres respectifs au méridien, peut encore influer sur le rapport des hauteurs de ces deux marées. Imaginons, en effet, un port situé à la jonction de deux canaux communiquant sous le même méridien avec la mer : supposons de plus, qu'à leur embouchure, la marée partielle de chaque astre arrive à l'instant même de son passage au méridien. La marée dans le port, sera le résultat des marées que chaque canal lui transmet : si la marée emploie un jour, à parvenir de la mer au port, par le premier canal, et huit jours et demi, par le second; la différence de ces intervalles, étant de sept jours et demi, les deux marées solaires de chaque canal, coïncideront dans le port, et la marée solaire composée, sera égale à leur somme. Mais sept jours et demi solaires ne formant que sept jours et un quart lunaires, la pleine marée lunaire du premier canal devra coincider avec la basse marée lunaire du second; ainsi la marée lunaire du port, ne sera que la différence des marées lunaires transmises par les deux canaux. En supposant donc qu'aux embouchures, les marées soient proportionnelles aux forces des astres; elles ne le seront plus dans le port où il peut même arriver que la marée lunaire soit plus faible que la marée solaire. Il importe donc, lorsque l'on veut conclure des phénomènes des marées, le rapport des forces du soleil et de la lune, de s'assurer que les marées observées sont dans le rapport de ces forces. L'analyse fournit pour cet objet, différens moyens : en les appliquant aux observations faites à Brest, j'ai reconnu que cette proportion avait lieu d'une manière approchée; mais il faudrait un très-grand nombre.

d'observations, pour avoir par cette méthode, une valeur exacte de la masse de la lune, qui d'après l'ensemble des phénomènes qu'elle produit, paraît n'être que $\frac{1}{68.5}$ de la masse de la terre.

Jusqu'ici, nous avons supposé le soleil et la lune mus d'une manière uniforme, dans le plan de l'équateur: faisons présentement varier leurs mouvemens et leurs distances au centre de la terre. En développant les expressions de leur action sur la mer, on peut en représenter chaque terme, par l'action d'un astre mu circulairement et uniformément autour de la terre; il est donc facile par les principes que nous venons d'exposer, de déterminer le flux et reflux de la mer, correspondant aux diverses inégalités du soleil et de la lune. En soumettant ainsi à l'analyse, les phénomènes des marées; on trouve que les marées produites par le soleil et la lune, augmentent en raison inverse du cube de leurs distances; les marées doivent donc, toutes choses égales d'ailleurs, croître dans le périgée de la lune, et diminuer dans son apogée. Ce phénomène est très-sensible à Brest: la comparaison des observations m'a fait voir qu'à cent secondes de variation dans le demi-diamètre de la lune, répond un demi-mêtre de variation dans la marée totale, quand la lune est dans l'équateur; et ce résultat de l'observation est tellement conforme à celui de la théorie, que l'on aurait pu déterminer par ce moyen, la loi de l'action de la lune sur la mer, relative à sa distance.

Les variations de la distance du soleil à la terre, sont sensibles sur les hauteurs des marées, mais beaucoup moins que celles de la distance de la lune; parce que son action pour élever les eaux de la mer, est trois fois plus petite, et que sa distance à la terre varie dans un moindre rapport. Ce résultat de la théorie est conforme aux observations.

L'action de la lune étant plus grande, et son mouvement étant plus rapide, lorsqu'elle est plus près de la terre; la marée composée dans les sysigies périgées, doit se rapprocher de la marée lunaire qui doit se rapprocher elle-même, du passage de la lune au méridien; car on vient de voir que la marée partielle se rapproche d'autant plus de l'astre qui la cause, que son mouvement est plus rapide. Les marées périgées du jour de la sysigie doivent donc avancer, et les marées apogées doivent retarder. On a vu dans le premier livre, que suivant les observations, chaque minute d'accroissement ou de diminution dans le demi-diamètre lunaire, fait avancer ou retarder la pleine mer, de 354", et c'est à fort peu près, ce qui résulte de la théorie.

La parallaxe de la lune influe encore sur l'intervalle de deux marées consécutives du matin ou du soir, vers les sysigies, ou dans le voisinage du maximum des marées. Suivant la théorie, une minute de variation dans le demi-diamètre de la lune, fait varier cet intervalle, de 258", exactement comme par les observations.

Ce phénomène a également lieu dans les quadratures; mais la théorie fait voir qu'il y est trois fois moindre que dans les sysigies. et c'est ce que les observations confirment. Pour en concevoir la raison, il faut considérer que le retard journalier de la marée lunaire augmente, quand le mouvement de la lune est plus rapide. comme cela a lieu dans le périgée; et que le retard des marées à leur maximum, augmente et se rapproche du retard journalier de la marée lunaire, quand la force lunaire augmente; ces deux causes concourent donc à augmenter l'intervalle des marées sysigies périgées. Dans les quadratures, quand la force lunaire augmente, le retard journalier de la marée diminue, en se rapprochant du retard de la marée lunaire; ainsi l'intervalle des marées augments par la rapidité du mouvement de la lune périgée, et diminue par l'accroissement de la force lunaire; les deux causes agissant donc alors en sens contraire, l'accroissement du retard de la marée n'est que l'effet de leur différence, et par cette raison, il est moindre que dans les sysigies.

Après avoir développé la théorie du flux et du reflux de la mer, en supposant le soleil et la lune mus dans le plan de l'équateur; nous allons considérer les mouvemens de ces astres, tels qu'ils sont dans la nature : nous verrons naître de leurs déclinaisons, de nouveaux phénomènes qui comparés aux observations, confirmeront de plus en plus la théorie précédente.

Ce cas général peut encore se ramener à celui de plusieurs

astres mus uniformément dans le plan de l'équateur; mais il faut donner à ces astres, des mouvemens très-différens dans leurs orbites. Les uns s'y meuvent avec lenteur; ils produisent un flux et un reflux dont la période est d'un demi-jour : d'autres ont un mouvement de révolution à peu près égal à la moitié du mouvement de rotation de la terre, et ils produisent un flux et un reflux dont la période est d'environ un jour : d'autres enfin ont un mouvement de révolution à peu près égal au mouvement de rotation de la terre; ils produisent un flux et un reflux dont les périodes sont d'un mois et d'une année. Examinons ces trois espèces de marées.

La première renferme non-seulement les oscillations que nous venons de considérer, et qui dépendent des mouvemens du soleil et de la lune, et des variations de leurs distances à la terre; mais d'autres encore dépendantes de leurs déclinaisons. En soumettant celles-ci à l'analyse; on trouve que les marées totales des sysigies des équinoxes, sont plus grandes que celles des sysigies des solstices, dans le rapport du rayon, au carré du cosinus de la déclinaison du soleil ou de la lune vers les solstices: on trouve de plus, que les marées totales des quadratures des solstices surpassent celles des quadratures des équinoxes, dans un plus grand rapport que celui du rayon, au carré du cosinus de la déclinaison de la lune, vers les quadratures des équinoxes. Ces résultats de la théorie sont confirmés par toutes les observations qui ne laissent aucun doute sur l'affaiblissement de l'action des astres, à mesure qu'ils s'éloignent de l'équateur.

Les déclinaisons du soleil et de la lune sont sensibles même sur les lois de la diminution et de l'accroissement des marées, en partant du maximum et du minimum. Leur diminution est suivant les observations, comme par la théorie, d'environ un tiers, plus rapide dans les sysigies des équinoxes, que dans les sysigies des solstices; leur accroissement est suivant les observations et par la théorie, environ deux fois plus rapide dans les quadratures des équinoxes, que dans les quadratures des solstices.

La position des nœuds de l'orbite lunaire, est pareillement sensible sur les hauteurs des marées, par son influence sur les déclinaisons de la lune. Le mouvement de cet astre en ascension droite, plus prompt dans les solstices que dans les équinoxes, doit rapprocher la marée lunaire, du passage de l'astre au méridien; l'heure des marées sysigies équinoxiales doit donc retarder sur l'heure des marées sysigies solsticiales. Par la même raison, l'heure des marées des quadratures des solstices doit retarder sur celle des marées des quadratures des équinoxes; et la théorie donne ce retard environ quadruple du premier.

Les déclinaisons du soleil et de la lune influent encore sur le retard journalier des marées des équinoxes et des solstices; il doit être plus grand vers les sysigies des solstices, que vers les sysigies des équinoxes; plus grand encore vers les quadratures des équinoxes, que vers les quadratures des solstices, et dans ce second cas, la différence des retards est quatre fois plus grande que dans le premier cas. Les observations confirment avec une précision remarquable, ces divers résultats de la théorie.

Les marées de la seconde espèce, dont la période est d'un jour, sont proportionnelles au produit du sinus, par le cosinus de la déclinaison des astres : elles sont nulles, quand les astres sont dans l'équateur, et elles croissent à mesure qu'ils s'en éloignent. En se combinant avec les marées de la première espèce, elles rendent inégales les deux marées d'un même jour. C'est par cette cause, que la marée du matin, à Brest, est d'environ o^m.,183, plus grande que celle du soir, vers les sysigies du solstice d'hiver, et plus petite de la même quantité, vers les sysigies du solstice d'été, comme on l'a vu dans le premier livre. La même cause rend encore la marée du matin, plus grande que celle du soir, de o^m.,136, vers les quadratures de l'équinoxe d'automne, et plus petite de la même quantité, vers les quadratures de l'équinoxe du printemps.

En général, les marées de la seconde espèce, sont peu considérables dans nos ports; leur grandeur est une arbitraire dépendante des circonstances locales qui peuvent les augmenter, et diminuer en même temps les marées de la première espèce, jusqu'à les rendre insensibles. Imaginons en effet, un large canal communiquant par ses deux extrémités, avec l'océan: la marée dans un port situé sur la rive de ce canal, sera le résultat des ondulations transmises

par ses deux embouchures; or il peut arriver qu'à raison de la situation du port, les ondulations de la première espèce y parviennent dans des temps tels que le maximum des unes coïncide avec le minimum des autres; et si d'ailleurs, elles sont égales entre elles. il est clair qu'il n'y aura point de flux et de reflux dans le port. en vertu de ces ondulations. Mais il y aura un flux produit par les ondulations de la seconde espèce, qui ayant une période deux fois plus longue, ne se correspondront point de manière que le maximum de celles qui viennent par une embouchure, coincide avec le minimum de celles qui arrivent par l'autre embouchure. Dans ce cas, il n'y aura point de flux et de reflux, quand le soleil et la lune seront dans le plan de l'équateur; mais la marée deviendra sensible, lorsque la lune s'éloignera de ce plan, et alors, il n'y aura qu'un flux et un reflux par jour lunaire, ensorte que si le flux arrive au coucher de la lune, le reflux arrivera à son lever. Ce singulier phénomène a été observé à Batsha, port du royaume de Tunquin, et dans quelques autres lieux. Il est vraisemblable que des observations faites dans les divers ports de la terre, offriraient toutes les variétés intermédiaires entre les marées de Batsha et celles de nos ports.

Considérons enfin les marées de la troisième espèce, dont les périodes sont fort longues et indépendantes de la rotation de la terre. Si les durées de ces périodes, étaient infinies; ces marées n'auraient d'autre effet, que de changer la figure permanente de la mer qui parviendrait bientôt à l'état d'équilibre, dû aux forces qui les produisent. Mais il est visible que la longueur de ces périodes doit rendre l'effet de ces marées, à très-peu près le même que dans le cas où elle serait infinie; on peut donc considérer la mer, comme étant sans cesse en équilibre sous l'action des astres fictifs qui produisent les marées de la troisième espèce, et les déterminer dans cette hypothèse. Ces marées sont très petites; elles sont cependant sensibles à Brest, et conformes au résultat du calcul.

Je suis entré dans un long détail, sur le flux et le reflux de la mer; parce qu'il est le résultat des attractions célestes, le plus près de nous, le plus sensible, et l'un des plus dignes de l'attention

des observateurs. On voit par l'exposé que je viens d'en faire. l'accord de la théorie fondée sur la loi de la pesanteur universelle, avec les phénomènes des hauteurs et des intervalles des marées. Si la terre n'avait point de satellite, et si son orbe était circulaire. et situé dans le plan de l'équateur; nous n'aurions pour reconnaître l'action du soleil sur l'océan, que l'heure toujours la même de la pleine mer, et la loi suivant laquelle la marée s'élève. Mais l'action de la lune, en se combinant avec celle du soleil, produit dans les marées, des variétés relatives à ses phases, et dont l'accord avec les observations, ajoute une grande probabilité à la théorie de la pesanteur. Toutes les inégalités du mouvement, de la déclinaison et de la distance de ces deux astres, donnent naissance à un grand pombre de phénomènes que l'observation a fait reconnaître, et qui mettent cette théorie, hors d'atteinte : c'est ainsi que les variétés dans l'action des causes, en établissent l'existence. L'action du soleil et de la lune sur la mer, suite nécessaire de l'attraction universelle démontrée par tous les phénomènes célestes, étant confimée directement par les phénomènes des marées; elle ne doit laisser aucun doute. Elle est portée maintenant à un tel degré d'évidence, qu'il existe sur cet objet, un accord unanime entre les savans instruits de ces phénomènes, et suffisamment versés dans la géométrie et dans la mécanique, pour en saisir les rapports avec la loi de la pesanteur. Une longue suite d'observations encore plus précises que celles qui ont été faites, et continuées pendant une période du mouvement des nœuds de l'orbe lunaire, rectifiera les élémens déjà connus, fixera la valeur de ceux qui sont incertains, et développera des phénomènes jusqu'ici enveloppés dans les erreurs des observations. Les marées ne sont pas moins intéressantes à connaître, que les inégalités des mouvemens célestes. On a négligé de les suivre avec une exactitude convenable, à cause des irrégularités qu'elles présentent; mais je puis assurer d'après un mûr examen, que ces irrégularités disparaissent en multipliant les observations : leur nombre ne doit pas même être pour cela, fort considérable à Brest dont la position est très-favorable à l'observation de ces phénomènes.

Il me reste à parler de la méthode de déterminer l'heure de la

marée, à un jour quelconque. Rappelons-nous que chacun de nos ports peut être considéré comme étant à l'extrémité d'un canal à l'embouchure duquel les marées partielles arrivent au moment même du passage des astres au méridien, et emploient un jour et demi, à parvenir à son extrémité supposée plus orientale que son embouchure, d'un certain nombre d'heures: ce nombre est ce que je nomme heure fondamentale du port. On peut facilement la conclure de l'heure de l'établissement du port, en considérant que celle-ci est l'heure de la marée, lorsqu'elle coïncide avec la sysigie. Le retard des marées d'un jour à l'autre, étant alors de 2705", ce retard sera de 3951" pour un jour et demi; c'est la quantité qu'il faut ajouter à l'heure de l'établissement, pour avoir l'heure fondamentale. Maintenant, si l'on augmente les heures des marées à l'embouchure, de quinze heures plus l'heure fondamentale; on aura les heures des marées correspondantes dans le port. Ainsi, le problème se réduit à déterminer les heures des marées dans un lieu dont la longitude est connue, en supposant que les marées partielles arrivent à l'instant du passage des astres au méridien: L'analyse donne pour cet objet, des formules très-simples, et faciles à réduire en tables.

Les grandes marées ont souvent produit dans les ports et sur les côtes, de fâcheux effets que l'on aurait prévenus, si l'on avait été d'avance, averti de la hauteur de ces marées. Les vents peuvent avoir sur ces phénomènes, une influence considérable qu'il est impossible de prévoir. Mais on peut prédire avec certitude, l'influence du soleil et de la lune; et cela suffit le plus souvent; pour se mettre à l'abri des accidens que les hautes marées doivent occasionner, lorsque l'impulsion des vents se joint à l'action des causes régulières. Pour faire jouir les départemens maritimes, de ce bienfait des sciences; le bureau des longitudes publie, chaque année, dans ses Éphémérides, le tableau des marées sysigies, en prenant pour unité, leur hauteur moyenne dans les sysigies des équinoxes,

CHAPITRE XIL

De la stabilité de l'équilibre des mers.

Plusieurs causes irrégulières, telles que les vents et les tremblemens de terre, agitent la mer, la soulèvent à de grandes hauteurs. et la font quelquefois sortir de ses limites. Cependant, l'observation nous montre qu'elle tend à reprendre son état d'équilibre, et que les frottemens et les résistances de tout genre, finiraient bientôt par l'y ramener, sans l'action du soleil et de la lune. Cette tendance constitue l'équilibre ferme ou stable, dont on a parlé dans le troisième livre. On a vu que la stabilité de l'équilibre d'un système de corps peut être absolue, ou avoir lieu, quel que soit le petit dérangement qu'il éprouve : elle peut n'être que relative, et dépendre de la nature de son ébranlement primitif. De quelle espèce est la stabilité de l'équilibre des mers? C'est ce que les observations ne peuvent pas nous apprendre avec une entière certitude; car, quoique dans la variété presque infinie des ébranlemens que l'océan éprouve par l'action des causes irrégulières, il paraisse toujours tendre vers son état d'équilibre; on peut craindre cependant, qu'une cause extraordinaire ne vienne à lui communiquer un ébranlement qui peu considérable dans son origine, augmente de plus en plus, et l'élève au-dessus des plus hautes montagnes; ce qui expliquerait plusieurs phénomènes d'histoire naturelle. Il est donc intéressant de rechercher les conditions nécessaires à la stabilité absolue de l'équilibre des mers, et d'examiner si ces conditions ont lieu dans la nature. En soumettant cet objet, à l'analyse; je me suis assuré que l'équilibre de l'océan est stable, si sa densité est moindre que la moyenne densité de la terre, 37

ce qui est fort vraisemblable; car il est naturel de penser que ses couches sont d'autant plus denses, qu'elles sont plus voisines de son centre. On a vu d'ailleurs que cela est prouvé par les mesures du pendule et des degrés des méridiens, et par l'attraction observée des montagnes. La mer est donc dans un état ferme d'équilibre; et si, comme il est difficile d'en douter, elle a recouvert autrefois, des continens aujourd'hui fort élevés au-dessus de son niveau; il faut en chercher la cause, ailleurs que dans le défaut de stabilité de son équilibre. L'analyse m'a fait voir encore, que cette stabilité cesserait d'avoir lieu, si la moyenne densité de la mer, surpassait celle de la terre; ensorte que la stabilité de l'équilibre de l'océan, et l'excès de la densité du globe terrestre, sur celle des eaux qui le recouvrent, sont liés réciproquement l'un à l'autre.

CHAPITRE XIII.

Des oscillations de l'atmosphère.

Pour arriver à l'océan, l'action du soleil et de la lune traverse l'atmosphère qui doit par conséquent, en éprouver l'influence, et être assujétie à des mouvemens semblables à ceux de la mer. De là résultent des vents, et des oscillations dans le baromètre, dont les périodes sont les mêmes que celles du flux et du reflux. Mais ces vents sont peu considérables et presque insensibles dans une atmosphère d'ailleurs fort agitée : l'étendue des oscillations du baromètre n'est pas d'un millimètre, à l'équateur même où elle est la plus grande. Cependant, comme à l'équateur, les variations du baromètre sont très-petites; je ne doute point qu'en augmentant le nombre et la précision des observations barométriques, on ne parvienne à reconnaître dans leurs résultats moyens, le flux et le reflux atmosphérique. D'ailleurs les circonstances locales qui augmentent considérablement les oscillations de la mer, peuvent également accroître les oscillations du baromètre dont l'observation suivie sous ce rapport, mérite l'attention des Physiciens.

Nous remarquerons ici, que l'attraction du soleil et de la lune ne produit ni dans la mer, ni dans l'atmosphère, aucun mouvement constant d'orient en occident; celui que l'on observe dans l'atmosphère entre les tropiques, sous le nom de vents alisés, a donc une autre cause: voici la plus vraisemblable.

Le soleil que nous supposons pour plus de simplicité, dans le plan de l'équateur, y raréfie par sa chaleur, les colonnes d'air, et les élève au-dessus de leur véritable niveau; elles doivent donc retomber par leur poids, et se porter vers les pôles, dans la partie supérieure de l'atmosphère: mais en même temps, il doit survenir

dans la partie inférieure, un nouvel air frais qui arrivant des climats situés vers les pôles, remplace celui qui a été raréfié à l'équateur. Il s'établit ainsi deux courans d'air opposés, l'un dans la partie inférieure, et l'autre dans la partie supérieure de l'atmosphère; or la vîtesse réelle de l'air, due à la rotation de la terre, est d'autant moindre, qu'il est plus près du pôle; il doit donc, en s'avançant vers l'équateur, tourner plus lentement que les parties correspondantes de la terre; et les corps placés à la surface terrestre, doivent le frapper avec l'excès de leur vîtesse, et en éprouver par sa réaction, une résistance contraire à leur mouvement de rotation. Ainsi, pour l'observateur qui se croit immobile, l'air paraît souffler dans un sens opposé à celui de la rotation de la terre, c'est-à-dire, d'orient en occident: c'est en effet, la direction des vents alisés.

Si l'on considère toutes les causes qui troublent l'équilibre de l'atmosphère, sa grande mobilité due à sa fluidité et à son ressort, l'influence du froid et de la chaleur sur son élastioité, l'immense quantité de vapeurs dont elle se charge et se décharge alternativement, enfin les changemens que la rotation de la terre produit dans la vîtesse relative de ses molécules, par cela seul qu'elles se déplacent dans le sens des méridiens; on ne sera point étonné de la variété de ses mouvemens qu'il sera très-difficile d'assujétir à des lois certaines. Cependant, on a reconnu à travers tant de mouvemens irréguliers, une oscillation périodique principalement sensible à l'équateur où elle a été d'abord remarquée; mais que l'inconstance de nos climats n'a pu dérober aux observateurs en Europe. Elle se manifeste par une petite oscillation diurne du baromètre dont le maximum a lieu vers neuf heures du matin, le minimum environ six heures après, et ainsi de suite, avec la circonstance que les oscillations de la nuit ont moins d'étendue que celles du jour. Le rapport constant de la durée de sa période; à celle du jour, ne permet pas de douter que ce phénomène ne soit ainsi que le phénomène des vents alisés, produit par l'action de la chaleur du soleil sur l'atmosphère.

CHAPITRE XIV.

De la précession des équinoxes, et de la nutation de l'axe de la terre.

Tout est lié dans la nature, et ses lois générales enchaînent les uns aux autres, les phénomènes qui semblent le plus disparates: ainsi, la rotation du sphéroïde terrestre l'aplatit à ses pôles; et cet aplatissement combiné avec l'action du soleil et de la lune, donne naissance à la précession des équinoxes, qui, avant la découverte de la pesanteur universelle, ne paraissait avoir aucun rapport au mouvement diurne de la terre.

Imaginons que cette planète soit un sphéroïde homogène renflé à son équateur : on peut alors la considérer comme étant formée d'une sphère d'un diamètre égal à l'axe des pôles, et d'un ménisque. qui recouvre cette sphère, et dont la plus grande épaisseur est à l'équateur du sphéroide. Les molécules de ce ménisque peuvent être regardées comme autant de petites lunes adhérentes entre elles, et faisant leurs révolutions dans un temps égal à celui de la rotation de la terre; les nœuds de toutes leurs orbités doivent donc rétrograder par l'action du soleil, comme les nœuds de l'orbe lunaire; et de ces mouvemens rétrogrades, il doit se composer, en vertu de la liaison de tous ces corps, un mouvement dans le ménisque, qui fait rétrograder ses points d'intersection avec l'écliptique : mais ce ménisque adhérant à la sphère qu'il recouvre, partage avec elle son mouvement rétrograde qui, par là, est considérablement ralenti; l'intersection de l'équateur avec l'écliptique, c'est-à-dire, les équinoxes doivent donc, par l'action du soleil, avoir un mouvement rétrograde. Essayons d'en approfondir les lois et la cause.

Pour cela, considérons l'action du soleil sur un anneau situé dans le plan de l'équateur. Si l'on imagine la masse de cet astre. distribuée uniformément sur la circonférence de son orbe supposé circulaire; il est visible que l'action de cet orbe solide représentera l'action moyenne du soleil. Cette action sur chacun des points de l'anneau, élevés au-dessus de l'écliptique, étant décomposée en deux, l'une située dans le plan de l'anneau, et l'autre perpendiculaire à ce plan, il est facile de voir que la résultante de ces dernières actions relatives à tous ces points, est perpendiculaire au même plan, et placée sur le diamètre de l'anneau, perpendiculaire à la ligne de ses nœuds. L'action de l'orbe solaire sur la partie de l'anneau, inférieure à l'écliptique, produit semblablement une résultante perpendiculaire au plan de l'anneau, et située dans la partie inférieure du même diamètre. Ces deux résultantes tendent à rapprocher l'anneau, de l'écliptique, en le faisant mouvoir sur la ligne de ses nœuds; son inclinaison à l'écliptique diminuerait donc par l'action moyenne du soleil, et ses nœuds seraient fixes. sans le mouvement de rotation de l'anneau que nous supposons ici tourner en même temps que la terre. Mais ce mouvement conserve à l'anneau, une inclinaison constante à l'écliptique, et change l'effet de l'action du soleil, dans un mouvement rétrograde des nœuds: il fait passer à ces nœuds, une variation qui, sans lui, serait dans l'inclinaison; et il donne à l'inclinaison, la constance qui serait dans les nœuds. Pour concevoir la raison de ce singulier changement, faisons varier infiniment peu la situation de l'anneau, de manière que les plans de ses deux positions se coupent suivant le diamètre perpendiculaire à la ligne des nœuds. On peut décomposer à la fin d'un instant quelconque, le mouvement de chacun de ses points, en deux, l'un qui doit subsister seul, dans l'instant suivant; l'autre perpendiculaire au plan de l'anneau, et qui doit être détruit : il est clair que la résultante de ces seconds mouvemens relatifs à tous les points de la partie supérieure de l'anneau, sera perpendiculaire à son plan, et placée sur le diamètre que nous venons de considérer; ce qui a également lieu par rapport à la partie inférieure de l'anneau. Pour que cette résultante soit détruite par l'action de l'orbe solaire, et afin que l'anneau, en vertu de ces

forces, soit en équilibre autour de son centre; il faut qu'elles soient contraires, et que leurs momens par rapport à ce point, soient égaux. La première de ces conditions exige que le changement de position supposé à l'anneau, soit rétrograde : la seconde condition détermine la quantité de ce changement, et par conséquent la vitesse du mouvement rétrograde de ses nœuds. Il est aisé de voir que cette vitesse est proportionnelle à la masse du soleil, divisée par le cube de sa distance à la terre, et multipliée par le cosinus de l'obliquité de l'écliptique.

Les plans de l'anneau, dans deux positions consécutives, se toupant suivant un diamètre perpendiculaire à la ligne des nœuds; il en résulte que l'inclinaison de ces deux plans à l'échiptique, est constante; l'inclinaison de l'anneau ne varie donc point par l'action

moyenne du soleil.

Ce que l'analyse le démentre par rapport à un sphéroïde quelconque peu différent d'une sphère. L'action moyenne du soleil produit dans les équinoxes, un mouvement proportionnel à la masse de cet astre, divisée par le cube de sa distance, et multipliée par le cosinus de l'obliquité de l'écliptique. Ce mouvement est rétrograde, quand le sphéroïde est aplati à ses pôles; sa vîtesse dépend de l'aplatissement du sphéroïde; mais l'inclinaison de l'équateur à l'écliptique, reste toujours la même.

L'action de la lune fait pareillement rétrograder les nœuds de l'équateur terrestre sur le plan de son orbite; mais la position de ce plan et son inclinaison à l'équateur variant sans cesse par l'action du soleit, et le mouvement rétrograde des nœuds de l'équateur sur l'orbite lunaire, produit par l'action de la lune, étant proportionnel au cosinus de cette inclinaison; ce mouvement est variable. D'ailleurs, en le supposant uniforme, il ferait varier, suivant la position de l'orbite lunaire, le mouvement rétrograde des équinoxes, et l'inclinaison de l'équateur à l'écliptique. Un calcul assez simple suffit pour voir que de l'action de la lune, combinée avec le mouvement du plan de son orbite, il résulte, 1° un moyen mouvement dans les équinoxes, égal à celui que cet astre produirait, s'il se mouvait sur le plan même de l'écliptique;

2° une inégalité soustractive de ce mouvement rétrograde, et proportionnelle au sinus de la longitude du nœud ascendant de l'orbite lunaire; 3° une diminution dans l'obliquité de l'écliptique, proportionnelle au cosinus du même angle. Ces deux inégalités sont représentées à-la-fois, par le mouvement de l'extrémité de l'axe terrestre prolongé jusqu'au ciel, sur une petite ellipse, conformément aux lois exposées dans le chapitre XII du premier livre; le grand axe de cette ellipse étant à son petit axe, comme le cosinus de l'obliquité de l'écliptique, est au cosinus du double de cette obliquité.

On conçoit, par ce qui vient d'être dit, la cause de la précession des équinoxes et de la nutation de l'axe terrestre; mais un calcul rigoureux, et la comparaison de ses résultats avec les observations, sont la pierre de touche d'une théorie. Celle de la pesanteur est redevable à D'Alembert, de l'avantage d'avoir été ainsi vérifiée relativement aux deux phénomènes précédens. Ce grand Géomètre a déterminé le premier, par une très-belle analyse, les mouvemens de l'axe de la terre, en supposant aux couches du sphéroïde terrestre, une figure et une densité quelconque; et non-seulement il a trouvé des résultats conformes aux observations; il a de plus fait connaître les vraies dimensions de la petite ellipse que décrit le pôle de la terre, sur lesquelles les observations de Bradley laissaient quelque incertitude.

Les influences d'un astre sur le mouvement de l'axe terrestre et sur celui des mers, sont proportionnelles à la masse de l'astre, divisée par le cube de sa distance à la terre. La nutation de cet axe étant uniquement due à l'action de la lune, tandis que la précession moyenne des équinoxes est le résultat des actions réunies de la lune et du soleil; il est visible que les quantités observées de ces deux phénomènes doivent donner le rapport de ces actions. En supposant avec Bradley, la précession annuelle des équinoxes, de 154″,4, et l'étendue entière de la nutation, égale à 55″,6; on trouve l'action de la lune, à très-peu près double de celle du soleil. Mais une légère différence dans l'étendue de la nutation, en produit une considérable dans le rapport des actions de ces deux astres. Les observations les plus précises donnent

59",554 pour cette étendue, d'où résulte 1 pour le rapport de la masse de la lune à celle de la terre.

Les phénomènes de la précession et de la nutation, répandent une nouvelle lumière sur la constitution du sphéroïde terrestre: ils donnent une limite de l'aplatissement de la terre supposée elliptique, et il en résulte que cet aplatissement n'est pas au-dessus de $\frac{1}{247.7}$, ce qui est conforme aux expériences du pendule. On a vu dans le chapitre VII, qu'il existe dans l'expression du rayon du sphéroïde terrestre, des termes qui peu sensibles en eux-mêmes et sur la longueur du pendule, écartent très-sensiblement les degrés des méridiens, de la figure elliptique. Ces termes disparaissent entièrement des valeurs de la précession et de la nutation, et c'est pour cela, que ces phénomènes sont d'accord avec les expériences du pendule. L'existence de ces termes concilie donc les observations de la parallaxe lunaire, celles du pendule et des degrés des méridiens, et les phénomènes de la précession et de la nutation.

Quelles que soient la figure et la densité que l'on suppose aux diverses couches dé la terre; qu'elle soit ou non, un solide de révolution, pourvu qu'elle diffère peu d'une sphère; on peut toujours assigner un solide elliptique de révolution, avec lequel la précession et la nutation seraient les mêmes. Ainsi, dans l'hypothèse de Bouguer, dont on a parlé dans le chapitre VII, et suivant laquelle les accroissemens des degrés sont proportionnels à la quatrième puissance du sinus de la latitude, ces phénomènes sont exactement les mêmes que si la terre était un ellipsoïde d'une ellipticité égale à 11/10, et l'on vient de voir que les observations ne permettent pas de lui supposer une ellipticité plus grande que 1/247.7; ces observations concourent donc avec celles du pendule, à faire rejeter cette hypothèse.

On a supposé dans ce qui précède, que la terre est entièrement solide; mais cette planète étant recouverte en grande partie, par les eaux de la mer, leur action ne doit-elle pas changer les phénomènes de la précession et de la nutation? c'est ce qu'il

importe d'examiner.

Les caux de la mer cédant en vertu de leur fluidité, aux attractions du soleil et de la lune; il semble au premier coup-d'œil. que leur réaction ne doit point influer sur les mouvemens de l'axe de la terre: aussi D'Alembert et tous les géomètres qui se sont occupés après lui, de ces mouvemens, l'ont entièrement négligée; ils sont même partis de là, pour concilier les quantités observées de la précession et de la nutation, avec les mesures des degrés terrestres. Cependant, un plus profond examen de cette matière. nous montre que la fluidité des eaux n'est pas une raison suffisante pour négliger leur effet sur la précession des équinoxes; car si d'un côté, elles obéissent à l'action du soleil et de la lune; d'un autre côté, la pesanteur les ramène sans cesse vers l'état d'équilibre, et ne leur permet de faire que de très-petites oscillations; il est donc possible que par leur attraction et leur pression sur le sphéroïde qu'elles recouvrent, elles rendent, au moins en partie, à l'axe de la terre, les mouvemens qu'il en recevrait, si elles venzient à se consolider. On peut d'ailleurs, s'assurer par un raisonnement fort simple, que leur réaction est du même ordre que l'action directe du soleil et de la lune, sur la partie solide de la terre.

Imaginons que cette planète soit homogène et de même densité que la mer; supposons de plus que les caux prennent à chaque instant, la figure qui convient à l'équilibre des forces qui les animent. Si dans ces hypothèses, la terre devenait tout-à-coup, entièrement fluide, elle conserverait la même figure, et toutes ses parties se feraient mutuellement équilibre; l'axe de rotation n'aurait donc aucune tendance à se mouvoir, et il est visible que cela doit subsister encore, dans le cas où une partie de cette masse formerait en se consolidant, le sphéroïde que recouvre la mer. Les hypothèses précédentes servent de fondement aux théories de Newton sur la figure de la terre, et sur le flux et le reflux de la mer: il est assez remarquable, que dans le nombre infini de celles que l'on peut faire sur les mêmes objets, ce grand Géomètre en ait choisi deux qui ne donnent ni précession, ni nutation; la réaction des eaux détruisant alors, l'effet de l'action du soleil et de la lune sur le noyau terrestre, quelle que soit sa figure. Il est vrai que ces deux bypothèses et surtout la dernière, ne sont pas conformes à

la nature; mais on voit à priori, que l'effet de la réaction des eaux, quoique différent de celui qui a lieu dans les hypothèses de Newton, est cependant du même ordre.

Les recherches que j'ai faites sur les oscillations de la mer, m'ont donné le moyen de déterminer cet effet de la réaction des eaux, dans les véritables hypothèses de la nature : elles m'ont conduit à ce théorème remarquable, savoir que quelles que soient la loi de la presondeur de la mer, et la figure du sphéroïde qu'elle recouvre; les phénomènes de la précession et de la nutation sont les mêmes que si la mer formait une masse solide, avec ce sphéroïde.

Si le soleil et la lune agissaient seuls sur la terre, l'inclinaison moyenne de l'écliptique à l'équateur serait constante; mais on a vu que l'action des planètes change continuellement la position de l'orbe terrestre, et qu'il en résulte dans son obliquité sur l'équateur, une diminution confirmée par toutes les observations anciennes et modernes. La même cause donne aux équinoxes, un mouvement annuel direct de 0'',9659; ainsi, la précession annuelle produite par l'action du soleil et de la lune, est diminaée de cette quantité, par l'action des planètes; et sans cette action, elle serait de 155",5927. Ces effets de l'action des planètes sont indépendans de l'aplatissement du sphéroïde terrestre; mais l'action du soleil et de la lune sur ce sphéroïde, doit les modifier et en changer les lois.

Rapportons à un plan fixe, la position de l'orbe de la terre, et le mouvement de son axe de rotation. Il est clair que l'action du soleil produira dans cet axe, en vertu des variations de l'écliptique, un mouvement d'oscillation analogue à la nutation, avec cette différence, que la période de ces variations étant incomparablement plus longue que celle des variations du plan de l'orbe lunaire, l'étendue de l'oscillation correspondante dans l'axe de la terre, est beaucoup plus grande que celle de la nutation. L'action de la lune produit dans ce même axe, une oscillation semblable; parce que l'inclinaison moyenne de son orbe sur celui de la terre, est constante. Le déplacement de l'écliptique, en se combinant avec l'action du soleil et de la lune sur la terre, produit donc dans

son obliquité sur l'équateur, une variation très-différente de ce qu'elle serait en vertu de ce déplacement seul: l'étendue entière de cette variation serait par ce déplacement, d'environ douze degrés; et l'action du soleil et de la lune la réduit à peu près à trois degrés.

La variation du mouvement des équinoxes, produite par les mêmes causes, change la durée de l'année tropique dans les différens siècles. Cette durée diminue, quand ce mouvement augmente, ce qui a lieu présentement; et l'année actuelle est plus courte d'environ 13", qu'au temps d'Hipparque. Mais cette variation dans la longueur de l'année, a des limites qui sont encore restreintes par l'action du soleil et de la lune sur le sphéroïde terrestre. L'étendue de ces limites serait d'environ 500", par le déplacement seul de l'écliptique; et elle est réduite à 120", par cette action.

Enfin, le jour lui-même, tel que nous l'avons défini dans le premier livre, est assujéti par le déplacement de l'écliptique, combiné avec l'action du soleil et de la lune, à de très-petites variations indiquées par la théorie, mais qui seront toujours insensibles aux observateurs. Suivant cette théorie, la rotation de la terre est uniforme, et la durée moyenne du jour peut être supposée constante; résultat très-important pour l'astronomie, puisque cette durée sert de mesure au temps, et aux révolutions des corps célestes. Si elle vensit à changer, on le reconnaîtrait par les durées de ces révolutions qui augmenteraient ou diminueraient proportionnellement; mais l'action des corps célestes n'y cause aucune altération sensible.

Cependant, on pourrait croire que les vents alisés qui soufflent constamment d'orient en occident entre les tropiques, diminuent la vitesse de rotation de la terre, par leur action sur les continens et les montagnes. Il est impossible de soumettre cette action à l'analyse : heureusement, on peut démontrer que son influence sur la rotation de la terre est nulle, au moyen du principe de la conservation des aires, que nous avons exposé dans le troisième livre. Suivant ce principe, la somme de toutes les molécules de la terre, des mers et de l'atmosphère, multipliées respectivement par les aires que décrivent autour du centre de gravité de la terre,

leurs rayons vecteurs projetés sur le plan de l'équateur, est constante en temps égal. La chaleur du soleil n'y produit point de changement, puisqu'elle dilate également les corps dans tous les sens; or il est visible que si la rotation de la terre venait à diminuer. cette somme serait plus petite; les vents alisés produits par la chaleur solaire n'altèrent donc point cette rotation. Le même raisonnement nous prouve que les courans de la mer ne doivent y apporter aucun changement sensible. Pour en faire varier sensiblement la durée; il faudrait un déplacement considérable dans les parties du sphéroïde terrestre. Ainsi, une grande masse transportée des pôles à l'équateur, rendrait cette durée plus longue: elle deviendrait plus courte, si des corps denses se rapprochaient du centre, ou de l'axe de la terre. Mais nous ne voyons aucune cause qui puisse déplacer à de grandes distances, des masses assez fortes pour qu'il en résulte une variation sensible dans la durée du jour, que tout nous autorise à regarder comme l'un des élémens les plus constans du système du monde. Il en est de même, des points où l'axe de rotation de la terre rencontre sa surface. Si cette planète tournait successivement autour de divers diamètres formant entre eux, des angles considérables; l'équateur et les pôles changeraient de place sur la terre; et les mers, en se portant vers le nouvel équateur, couvriraient et découvriraient alternativement de hautes montagnes. Mais toutes les recherches que j'ai faites sur le déplacement des pôles de rotation, à la surface de la terre. m'ont prouvé qu'il est insensible.

CHAPITRE XV.

De la libration de la Lune.

IL nous reste enfin à expliquer la cause de la libration de la lune, et du mouvement des nœuds de son équateur. La lune, en vertu de son mouvement de rotation, est un peu aplatie à ses pôles; mais l'attraction de la terre a dû alonger son axe dirigé vers cette planète. Si la lune était homogène et fluide, elle prendrait pour être en équilibre, la forme d'un ellipsoïde dont le plus petit axe passerait par les pôles de rotation: le plus grand axe serait dirigé vers la terre, et dans le plan de l'équateur lunaire; et l'axe moyen situé dans le même plan, serait perpendiculaire aux deux autres. L'excès du plus petit sur le plus grand axe, serait quadruple de l'excès de l'axe moyen sur le petit axe, et environ 1971, le petit axe étant pris pour unité.

On conçoit aisément que si le grand axe de la lune s'écarte un peu de la direction du rayon vecteur qui joint son centre à celui de la terre, l'attraction terrestre tend à le ramener sur ce rayon; de même que la pesanteur ramène un pendule, vers la verticale. Si le mouvement de rotation de ce satellite eût été primitivement assez rapide pour vaincre cette tendance, la durée de sa rotation n'aurait pas été parfaitement égale à la durée de sa révolution, et leur différence nous eût découvert successivement tous les points de sa surface. Mais dans l'origine, les mouvemens angulaires de rotation et de révolution de la lune ayant été peu différens; la force avec laquelle le grand axe de la lune s'éloignait de son rayon vecteur, n'a pas suffi pour surmonter la tendance du même axe vers ce rayon, due à la pesanteur terrestre qui de cette manière, a rendu ces mouvemens rigoureusement égaux; et de même qu'un

pendule écarté par une très-petite force, de la verticale, y revient sans cesse, en faisant de chaque côté, de petites oscillations; ainsi, le grand axe du sphéroïde lunaire doit osciller de chaque côté du rayon vecteur moyen de son orbite. De là résulte un mouvement de libration dont l'étendue dépend de la différence primitive des deux mouvemens angulaires de rotation et de révolution de la lune. Cette libration est très-petite, puisque les observations ne l'ent point fait reconnaître.

On voit donc que la théorie de la pesanteur explique d'une manière satisfaisante, l'égalité rigoureuse des deux moyens mouvemens angulaires de rotation et de révolution de la lune. Il serait contre toute vraisemblance, de supposer qu'à l'origine, ces deux mouvemens ont été parfaitement égaux; mais pour l'explication de ce phénomène, il suffit que leur différence primitive ait été très-petite; et alors l'attraction de la terre a établi la parfaite égalité que l'on observe.

Le moyen mouvement de la lune étant assujéti à de grandes inégalités séculaires qui s'élèvent à plusieurs circonférences; il est clair que, si son moyen mouvement de rotation était parfaitement uniforme, ce satellite, en vertu de ces inégalités, découvrirait successivement à la terre, tous les points de sa surface: son disque apparent changerait par des nuances insensibles. à mesure que ces inégalités se développeraient : les mêmes observateurs le verraient toujours à très-peu près le même, et il ne paraîtrait sensiblement différer, qu'à des observateurs séparés par l'intervalle de plusieurs siècles. Mais la cause qui a établi une parfaite égalité entre les moyens mouvemens de rotation et de révolution de la lune, ôte pour jamais aux habitans de la terre, l'espoir de découvrir les parties de sa surface, opposées à l'hémisphère qu'elle nous présente. L'attraction terrestre, en ramenant sans cesse vers nous, le grand axe de la lune, fait participer son mouvement de rotation aux inégalités séculaires de son mouvement de révolution, et dirige constamment le même hémisphère vers la terre. La même théorie doit être étendue à tous les satellites dans lesquels on a observé l'égalité des mouvemens de rotation et de révolution autour de leur planète.

Le phénomène singulier de la coïncidence des nœuds de l'équateurde la lune avec ceux de son orbite, est encore une suite de l'attraction terrestre. C'est ce que Lagrange a fait voir le premier, par une très-belle analyse qui l'a conduit à l'explication complète de tousles mouvemens observés dans le sphéroïde lunaire. Les plans de l'équateur et de l'orbite de la lune, et le plan mené par son centre parallèlement à l'écliptique, ont toujours à fort peu près la même intersection: j'ai reconnu que les mouvemens séculaires de l'écliptique n'altèrent ni la coïncidence des nœuds de oes trois plans, ni leur inclinaison moyenne que l'attraction de la terre maintient constamment la même.

Observons ici que les phénomènes précédens ne peuvent pas subsister avec l'hypothèse dans laquelle la lune primitivement fluide et formée de couches de densités quelconques, aurait pris la figure qui convient à leur équilibre : ils indiquent entre les axes du sphéroïde lunaire, de plus grandes différences que celles qui ont lieu dans cette hypothèse. Les hautes montagnes que l'on observe à la surface de la lune, ont sans doute, sur ces phénomènes, une influence très-sensible et d'autant plus grande, que son aplatissement est fort petit, et sa masse, peu considérable.

Quand la nature assujétit les moyens mouvemens célestes, à des conditions déterminées; ils sont toujours accompagnés d'oscillations dont l'étendue est arbitraire : ainsi, l'égalité des moyens mouvemens de rotation et de révolution de la lune, est accompagnée d'une libration réelle de ce satellite. Pareillement, la coïncidence des nœuds moyens de l'équateur et de l'orbite lunaire, est accompagnée d'une libration des nœuds de cet équateur, autour de ceux de l'orbite; libration très-petite, puisqu'elle a échappé jusqu'ici aux observations. On a yu que la libration réelle du grand axe de la lune est insensible, et nous ayons observé dans le chapitre VI, que la libration des trois premiers satellites de Jupiter, est pareillement insensible. Il est très-remarquable que ces librations dont l'étendue est arbitraire et pourrait être considérable, soient cependant fort petites; ce que l'on peut attribuer aux mêmes causes qui, dans l'origine, ont établi les conditions dont elles dépendent. Mais relativement aux arbitraires qui tiennent au mouvement initial de rotation

des corps célestes, il est naturel de penser que sans les attractions étrangères, toutes leurs parties en vertu des frottemens et des résistances qu'elles opposent à leurs mouvemens réciproques, auraient pris à la longue, un état constant d'équilibre, qui ne peut exister qu'avec un mouvement de rotation uniforme, autour d'un axe invariable; ensorte que les observations ne doivent plus offirir dans ce mouvement, que les inégalités dues à ces attractions. C'est ce qui a lieu pour la terre, comme on s'en est assuré par les observations les plus précises : le même résultat s'étend à la lune, et probablement à tous les corps célestes.

Si la lune a été rencontrée par quelque comète (ce qui suivant la théorie des chances, a dû arriver dans l'immensité des temps), leurs masses ont dû être d'une petitesse extrême; car le choc d'une comète qui ne serait qu'un cent-millième de la terre, eût suffi pour rendre sensible, la libration réelle de ce satellite, qui cependant n'a pu être aperçue par les observations. Cette considération jointe à celles que nous avons présentées dans le chapitre IV, doit rassurer les Astronomes qui peuvent craindre que les élémens de leurs tables ne soient changés par l'action de ces corps.

L'égalité des mouvemens de rotation et de révolution de la lune, fournit à l'Astronome qui veut en décrire la surface, un méridien universel donné par la nature, et facile à retrouver dans tous les temps; avantage que n'a point la géographie dans la description de la terre. Ce méridien est celui qui passe par les pôles de la lune, et par l'extrémité de son grand axe toujours à fort peu près dirigé vers nous. Quoique cette extrémité ne soit distinguée par aucune tache, cependant on peut en fixer la position à chaque instant, en considérant qu'elle coıncide avec la ligne des nœuds moyens de l'orbite lunaire, quand cette ligne coıncide elle-même avec le lieu moyen de la lune. La situation des principales taches de sa surface, a ainsi été déterminée aussi exactement que celle de beaucoup de lieux remarquables de la terre.

Ċ

CHAPITRE XVI.

Des mouvemens propres des étoiles.

Après avoir considéré les mouvemens des corps du système solaire, il nous reste à examiner ceux des étoiles qui toutes, en vertu de la pesanteur universelle, doivent graviter les unes vers les autres et décrire des orbes immenses. Déjà les observations ont fait reconnaître ces grands mouvemens qui probablement sont en partie, des apparences dues au mouvement de translation du système solaire, mouvement que d'après les lois de l'optique, nous transportons en sens contraire aux étoiles. Lorsque l'on en considère un grand nombre, leurs mouvemens réels ayant lieu dans tous les sens, ils doivent disparaître dans l'expression du mouvement du soleil, conclu de l'ensemble de leurs mouvemens propres observés. C'est ainsi que l'on a reconnu que le système du soleil et de tout ce qui l'environne, est emporté vers la constellation d'Hercule, avec une vitesse au moins égale à celle de la terre dans son orbite. Mais des observations très-précises et très-multipliées, taites à un ou deux siècles d'intervalle; détermineront exactement ce point important et délicat du système du monde.

Outre ces grands mouvemens du soleil et des étoiles, on en observe de particuliers dans plusieurs étoiles doubles; on nomme ainsi deux étoiles extrêmement rapprochées qui paraissent n'en former qu'une, dans les lunettes dont le grossissement est peu considérable. Leur proximité apparente peut tenir à ce qu'elles sont à fort peu près sur le même rayon visuel. Mais une disposition semblable est déjà un indice de leur proximité réelle; et si de plus, elles ont des mouvemens propres considérables et fort peu différens en ascension droite et en déclinaison; il devient alors extrêmement

probable qu'elles forment un système de deux corps très-rapprochés. et que les petites différences de leurs mouvemens propres sont dues à un mouvement de révolution de chacune d'elles, autour de leur centre commun de gravité : sans cela, l'existence simultanée de ces trois choses, la proximité apparente des deux étoiles et leurs mouvemens presque égaux, soit en ascension droite, soit en déclinaison, serait totalement invraisemblable. La 61 ième du Cigne et sa suivante, réunissent ces trois conditions, d'une manière remarquable : l'intervalle qui les sépare, n'est que de 60"; leurs mouvemens propres annuels depuis Bradley jusqu'à nous, ont été 15",75 et 16",03 en ascension droite; 10",24 et 9",56 en déclinaison; il est donc extrêmement probable que ces deux étoiles sont très-rapprochées, et qu'elles tournent autour de leur centre commun de gravité, dans une période de plusieurs siècles. La direction de leurs mouvemens propres, étant presque opposée à celle du mouvement du système solaire, elle semble indiquer qu'ils sont, au moins en grande partie, une illusion optique due à ce dernier mouvement; et comme ils sont très-considérables, la parallaxe annuelle de ces deux étoiles, doit être l'une des plus grandes. Si l'on parvient à la déterminer; on aura par le temps de leur révolution, l'une autour de l'autre, la somme de leurs masses par rapport à celles du soleil et de la terre.

Le spectacle du ciel nous offre encore plusieurs groupes d'étoiles brillantes resserrées dans un petit espace : tel est celui des Pléiades. Une disposition semblable indique avec beaucoup de vraisemblance, que les étoiles de chaque groupe, sont fort rapprochées relativement à la distance qui les sépare des autres étoiles, et qu'elles ont autour de leur centre commun de gravité, des mouvemens que la suite des siècles fera connaître.

CHAPITRE XVII.

Réflexions sur la loi de la pesanteur universelle.

En considérant l'ensemble des phénomènes du système solaire, on peut les ranger dans les trois classes suivantes; la première embrasse les mouvemens des centres de gravité des corps célestes, autour des foyers des forces principales qui les animent; la seconde comprend tout ce qui concerne la figure et les oscillations des fluides qui les recouvrent; enfin les mouvemens de ces corps autour de leurs centres de gravité, sont l'objet de la troisième. C'est dans cet ordre, que nous avons expliqué ces divers phénomènes; et l'on a vu qu'ils sont une suite nécessaire du principe de la pesanteur universelle. Ce principe a fait connaître un grand nombre d'inégalités qu'il eût été presque impossible de démêler dans les observations : il a fourni le moyen d'assujétir les mouvemens célestes, à des règles sûres et précises : les Tables astronomiques, uniquement fondées sur la loi de la pesanteur, n'empruntent maintenant des observations, que les élémens arbitraires qui ne peuvent pas être autrement connus; et l'on ne doit espérer de les perfectionner encore, qu'en portant plus loin à-la-fois, la précision des observations et celle de la théorie.

Le mouvement de la terre, qui par la simplicité avec laquelle il explique les phénomènes célestes, avait entraîné les suffrages des Astronomes, a reçu du principe de la pesanteur, une confirmation nouvelle qui l'a porté au plus haut degré d'évidence dont les sciences physiques soient susceptibles. On peut accroître la probabilité d'une théorie, soit en diminuant le nombre des hypothèses sur lesquelles on l'appuie, soit en augmentant le nombre des phénomènes qu'elle explique. Le principe de la pesanteur a

procuré ces deux avantages à la théorie du mouvement de la terre. Comme il en est une suite nécessaire, il n'ajoute aucune supposition nouvelle à cette théorie : mais pour expliquer les mouvemens des astres, Copernic admettait dans la terre trois mouvemens distincts; l'un autour du soleil; un autre de révolution sur ellemême; enfin, un troisième mouvement de ses pôles, autour de ceux de l'écliptique. Le principe de la pesanteur les fait dépendre tous. d'un seul mouvement imprimé à la terre, suivant une direction qui ne passe point par son centre de gravité. En vertu de ce mouvement. elle tourne autour du soleil et sur elle-même; elle a pris une figure aplatie à ses pôles; et l'action du soleil et de la lune sur cette. figure, fait mouvoir lentement l'axe de la terre autour des pôles de l'écliptique. La découverte de ce principe a donc réduit au plus petit nombre possible, les suppositions sur lesquelles Copernic fondait sa théorie. Elle a d'ailleurs l'avantage de lier cette théorie, à tous les phénomènes astronomiques. Sans elle, l'ellipticité des orbes planétaires, les lois que les planètes et les comètes suivent dans leurs mouvemens autour du soleil, leurs inégalités séculaires et périodiques, les nombreuses inégalités de la lune et des satellites de Jupiter, la précession des équinoxes, la nutation de l'axe terrestre, les mouvemens de l'axe lunaire, enfin le flux et le reflux de la mer, ne seraient que des résultats de l'observation, isolés entre eux. C'est une chose vraiment digne d'admiration, que la manière dont tous ces phénomènes qui semblent, au premier coup-d'œil, fort disparates, découlent d'une même loi qui les enchaîne au mouvement de la terre, ensorte que ce mouvement étant une fois admis, on est conduit par une suite de raisonnemens géométriques, à ces phénomènes. Chacun d'eux fournit donc une preuve de son existence; et si l'on considère qu'il n'y en a pas maintenant un seul, qui ne soit ramené à la loi de la pesanteur; que cette loi déterminant avec la plus grande exactitude, la position et les mouvemens des corps célestes, à chaque instant et dans tout leur cours, il n'est pas à craindre qu'elle soit démentie par quelque phénomène jusqu'ici non observé; enfin, que la planète Uranus et ses satellites, et les quatre petites planètes nouvellement découvertes lui obéissent et la confirment; il est impossible de se refuser

à l'ensemble de ces preuves, et de ne pas convenir que rien n'est mieux démontré dans la philosophie naturelle, que le mouvement de la terre, et le principe de la gravitation universelle, en raison des masses, et réciproque au carré des distances.

L'extrême difficulté des problèmes relatifs au système du monde, force de recourir à des approximations qui laissent toujours à craindre que les quantités négligées n'aient sur leurs résultats, une influence sensible. Lorsque les Géomètres ont été avertis par l'observation, de cette influence, ils sont revenus sur leur analyse : en la rectifiant, ils ont toujours retrouvé la cause des anomalies observées : ils en ont déterminé les lois, et souvent ils ont devancé l'observation, en découvrant des inégalités qu'elle n'avait pas encore indiquées. Les théories de la lune, de Saturne, de Jupiter et de ses satellites offrent, comme on l'a vu, beaucoup d'exemples de ce genre. Ainsi l'on peut dire que la nature elle-même a concouru à la perfection des théories astronomiques, fondées sur le principe de la pesanteur universelle : c'est à mon sens, l'une des plus fortes preuves de la vérité de ce principe admirable.

Ce principe est-il une loi primordiale de la nature? n'est-il qu'un effet général d'une cause inconnue? Ici, l'ignorance où nous sommes des propriétés intimes de la matière, nous arrête, et nous ôte tout espoir de répondre d'une manière satisfaisante à ces questions. Au lieu de former sur cela, des hypothèses; bornons-nous à examiner plus particulièrement, la manière dont le principe de la gravitation a été employé par les Géomètres.

Ils sont partis des cinq suppositions suivantes, savoir, 1° que la gravitation a lieu entre les plus petites molécules des corps; 2° qu'elle est proportionnelle aux masses; 5° qu'elle est réciproque au carré des distances; 4° qu'elle se transmet dans un instant d'un corps à l'autre; 5° enfin, qu'elle agit également sur les corps en repos, et sur ceux qui, déjà mus dans sa direction, semblent se soustraire en partie, à son activité.

La première de ces suppositions est, comme on l'a vu, un résultat nécessaire de l'égalité qui existe entre l'action et la réaction; chaque molécule de la terre devant attirer la terre entière, comme elle en est attirée. Cette supposition est confirmée d'ailleurs, par

les mesures des degrés des méridiens et du pendule; car au travers des irrégularités que les degrés mesurés semblent indiquer dans la figure de la terre; on démêle, si je puis ainsi dire, les traîts d'une figure régulière et conforme à la théorie. Les deux inégalités du mouvement lunaire en longitude et en latitude, dues à l'ellipticité de la terre, prouvent encore que son attraction se compose des attractions de toutes ses molécules; enfin la même chose est démontrée pour Jupiter, par la grande influence de son aplatissement sur les mouvemens des nœuds et des périjoves de ses satellites.

La proportionnalité de la force attractive aux masses, est démontrée sur la terre, par les expériences du pendule dont les oscillations sont exactement de la même durée, quelles que soient les substances que l'on fait osciller : elle est prouvée dans les espaces célestes, par le rapport constant des carrés des temps de la révolution des corps qui circulent autour d'un foyer commun, aux cubes des grands axes de leurs orbites. L'action de la pesanteur n'est point troublée par les causes qui, sans changer la masse d'un système de corps, peuvent en altérer considérablement la constitution intime. Ainsi les effervescences, le développement des gaz, l'électricité, la chaleur et les combinaisons produites par le mélange de plusieurs substances contenues dans un vaisseau fermé, n'altèrent son poids, ni pendant, ni après le mélange. On a pareillement observé qu'une lame d'acier, après avoir été fortement aimantée, conserve le même poide qu'auparavant : l'égalité de l'action à la réaction, et l'analogie nous prouvent que de semblables phénomènes. en se développant dans la terre et dans tous les corps célestes, ne font varier leur force attractive, que par les changemens qu'ils produisent dans la position des molécules, autour du centre de gravité de ces corps ; changemens dont les effets deviennent insensibles à de grandes distances.

On a vu dans le premier chapitre, avec quelle précision le repos presque absolu des périhélies des orbes planétaires, indique la loi de la pesanteur réciproque au carré des distances; et maintenant que nous connaissons la cause des petits mouvemens de ces périhélies, nous devons regarder cette loi, comme étant rigoureuse. Elle est celle de toutes les émanations qui partent d'un centre,

telles que la lumière; il paraît même que toutes les forces dont l'action se fait apercevoir à des distances sensibles, suivent cette loi : on a reconnu depuis peu, que les attractions et les répulsions électriques et magnétiques décroissent en raison du carré des distances, ensorte que toutes ces forces ne s'affaiblissent en se propageant, que parce qu'elles s'étendent comme la lumière; leurs quantités étant les mêmes sur les diverses surfaces sphériques que l'on peut imaginer autour de leurs foyers. Une propriété remarquable de cette loi de la nature, est que si les dimensions de tous les corps de cet univers, leurs distances mutuelles et leurs vîtesses. venaient à augmenter ou à diminuer proportionnellement; ils décriraient des courbes entièrement semblables à celles qu'ils décrivent, et leurs apparences seraient exactement les mêmes; car les forces qui les animent, étant le résultat d'attractions proportionnelles aux masses divisées par le carré des distances, elles augmenteraient ou diminueraient proportionnellement aux dimensions du nouvel univers. On voit en même temps, que cette propriété ne peut appartenir qu'à la loi de la nature. Ainsi, les apparences des mouvemens de l'univers sont indépendantes de ses dimensions absolues, comme elles le sont, du mouvement absolu qu'il peut avoir dans l'espace; et nous ne pouvons observer et connaître que des rapports. Cette loi donne aux sphères, la propriété de s'attirer mutuellement, comme si leurs masses étaient réunies à leurs centres. Elle termine encore les orbes et les figures des corps célestes, par des lignes et des surfaces du second ordre, du moins en négligeant leurs perturbations, et en les supposant fluides.

Nous n'avons aucun moyen pour mesurer la durée de la propagation de la pesanteur; parce que l'attraction du soleil ayant une fois atteint les planètes, cet astre continue d'agir sur elles, comme si sa force attractive se communiquait dans un instant, aux extrémités du système planétaire; on ne peut donc pas savoir en combien de temps elle se transmet à la terre; de même qu'il eût été impossible, sans les éclipses des satellites de Jupiter, et sans l'aberration, de reconnaître le mouvement successif de la lumière. Il n'en est pas ainsi de la petite différence qui peut exister dans l'action de la pesanteur sur les corps, suivant la direction et la

grandeur de leur vîtesse. Le calcul m'a fait voir qu'il en résulte une accélération dans les moyens mouvemens des planètes autour du soleil, et des satellites autour de leurs planètes. J'avais imaginé ce moyen d'expliquer l'équation séculaire de la lune, lorsque je croyais avec tous les Géomètres, qu'elle était inexplicable dans les hypothèses admises sur l'action de la pesanteur. Je trouvais que si elle provenait de cette cause, il fallait supposer à la lune, pour la soustraire entièrement à sa pesanteur vers la terre, une vîtesse vers le centre de cette planète, au moins sept millions de fois plus grande que celle de la lumière. La vraie cause de l'équation séculaire de la lune, étant aujour-d'hui, bien connue; nous sommes certains que l'activité de la pesanteur est beaucoup plus grande encore. Cette force agit donc avec une vîtesse que nous pouvons considérer comme infinie; et nous devons en conclure que l'attraction du soleil se communique dans un instant presque indivisible, aux extrémités du système solaire.

Existe-t-il entre les corps célestes, d'autres forces que leur attraction mutuelle? nous l'ignorons; mais nous pouvons du moins affirmer que leur effet est insensible. Nous pouvons assurer également, que tous ces corps n'éprouvent qu'une résistance jusqu'à présent insensible, de la part des fluides qu'ils traversent, tels que la lumière, les queues des comètes et la lumière zodiacale. La masse du soleil doit s'affaiblir sans cesse par l'émission continuelle de ses rayons. Mais, soit à cause de l'extrême ténuité de la lumière, soit parce que cet astre répare la perte qu'il éprouve, par des moyens jusqu'ici inconnus; il est certain que depuis deux mille ans, sa substance n'a pas diminué d'un deux-millionième.

La nature nous offre dans les phénomènes électriques et magnétiques, des forces répulsives qui suivent la même loi, que la pesanteur universelle. Coulomb a fait voir par des expériences très-délicates, que les points animés de deux électricités semblables se repoussent en raison inverse du carré de la distance, et qu'ils s'attirent suivant la même loi, lorsque les électricités sont contraires. En concevant les électricités opposées, comme deux fluides différens, parfaitement mobiles dans les corps conducteurs, et contenus par les surfaces des corps non conducteurs; en supposant ensuite que les molécules d'un même fluide se repoussent mutuellement et

attirent les molécules de l'autre fluide suivant la loi des attractions. célestes; on peut leur appliquer les formules relatives à ces attractions. C'est ainsi que je suis parvenu à démontrer que le fluide électrique dans un corps conducteur doit, pour l'équilibre, se porter en entier à la surface où il forme une couche extrêmement mince contenue par l'air qui l'enveloppe. Sa répulsion est nulle dans son intérieur; mais à sa surface extérieure, elle est à chaque point, proportionnelle à l'épaisseur de la couche : la pression qu'un de ses points extérieurs éprouve, et en vertu de laquelle il tend à s'échapper, est proportionnelle au carré de cette épaisseur. Sur un ellipsoïde quelconque, les deux surfaces extérieure et intérfeure de la couche, sont semblables et concentriques à la surface de l'ellipsoïde : si l'ellipsoïde est de révolution et alonge, la tendance du fluide à s'échapper aux pôles, est à sa tendance à s'échapper à l'équateur, dans le rapport du carré du grand axe au carré du petit axe; ce qui donne une explication mathématique du pouvoir des pointes. Mais la distribution des fluides électriques sur un corps de figure quelconque, ou sur plusieurs corps en présence les uns des autres, est un problème d'une extrême difficulté, qui peut donner lieu à des recherches analytiques très-curieuses; car la solution de ces questions difficiles, a l'avantage de perfectionner à-la-fois la physique et l'analyse. Déjà Poisson, par une analyse fort ingénieuse, est parvenu à déterminer la loi suivant laquelle l'électricité se répand à la surface de deux sphères en présence l'une de l'autre. L'accord de ses résultats avec les expériences de Coulomb, confirme la justesse du principe qui leur sert de base. On doit au reste considérer toutes ces forces, comme des concepts mathématiques propres à les soumettre au calcul, et non comme des qualités inhérentes aux molécules électriques. Il est possible qu'elles soient des résultantes d'autres forces analogues aux affinités qui ne sont sensibles par elles-mêmes, qu'extrêmement près du contact, mais dont l'action, au moyen de fluides intermédiaires, est transmise à des distances sensibles, et en raison inverse du carré de ces distances. Les attractions des petits corps qui nagent à la surface des liquides, nous fourniront dans le chapitre suivant, un exemple remarquable de ces transmissions.

CHAPITRE XVIIL

De l'attraction moléculaire.

L'ATTRACTION disparait entre les corps d'une grandeur peu considérable : elle reparaît dans leurs élémens sous une infinité de formes. La solidité, la cristallisation, la réfraction de la lumière, l'élévation et l'abaissement des liquides dans les espaces capillaires, et généralement toutes les combinaisons chimiques sont le résultat de forces dont la connaissance est un des principaux objets de l'étude de la nature. Ainsi la matière est soumise à l'empire de diverses forces attractives: l'une d'elles s'étendant indéfiniment dans l'espace, régit les mouvemens de la terre et des corps célestes : tout ce qui tient à la constitution intime des substances qui les composent, dépend principalement des autres forces dont l'action n'est sensible qu'à des distances imperceptibles. Il est presque impossible par cette raison, de connaître les lois de leur variation avec la distance; heureusement, la propriété de n'être sensibles qu'extrêmement près du contact, suffit pour soumettre à l'analyse. un grand nombre de phénomènes intéressans qui en dépendent. Je vais ici présenter succinctement les principaux résultats de cette analyse, et par là compléter la théorie mathématique de toutes les forces attractives de la nature.

On a vu dans le premier livre, qu'un rayon lumineux, en passant du vide dans un milieu transparent, s'infléchit de manière que le sinus d'incidence est au sinus de réfraction, en raison constante. Cette loi fondamentale de la dioptrique est le résultat de l'action du milieu sur la lumière, en supposant que cette action n'est sensible qu'à des distances imperceptibles. Concevons, en

effet, le milieu terminé par une surface plane : il est visible qu'une molécule de lumière, avant de la traverser, est attirée semblablement de tous les côtés de la perpendiculaire à cette surface; puisqu'à une distance sensible de la molécule, il y a de tous les côtés, le même nombre de molécules attirantes; la résultante de leurs actions est donc dirigée suivant cette perpendiculaire. Après avoir pénétré dans le milieu, la molécule de lumière continue d'être attirée suivant une perpendiculaire à la surface; et si l'on imagine le milieu partagé en tranches parallèles à cette surface, et d'une épaisseur infiniment petite; on verra que l'attraction des tranches supérieures à la molécule attirée, étant détruite par l'attraction d'un nombre égal de tranches inférieures, la molécule de lumière est précisément attirée, comme elle l'était à la même distance de la surface, avant de la traverser; l'attraction qu'elle éprouve, est donc insensible, lorsqu'elle a pénétré sensiblement dans le milieu diaphane, et son mouvement devient alors uniforme et rectiligne. Maintenant, il résulte du principe de la conservation des forces vives, exposé dans le troisième livre, que le carré de la vîtesse primitive de la molécule de lumière, décomposée perpendiculairement à la surface du milieu, est augmenté d'une quantité toujours la même, quelle que soit cette vîtesse. Parallèlement à cette surface, la vîtesse n'est point altérée par l'action du milieu; l'accroissement du carré de la vîtesse entière, et par conséquent celui de cette vitesse elle-même, sont donc indépendans de la direction primitive du rayon lumineux. Or le rapport de la vîtesse parallèle à la surface, à la vitesse primitive, forme le sinus d'incidence; son rapport à la vîtesse dans le milieu, est le sinus de réfraction; ces deux sinus sont donc réciproquement comme les vitesses de la lumière avant et après son entrée dans le milieu, et par conséquent, ils sont en raison constante. La différence de leurs carrés, divisée par le carré du sinus de réfraction, et multipliée par le carré de la vîtesse de la lumière dans le vide, exprime l'action du milieu sur le rayon : en la divisant par la densité spécifique de ce milieu, on a son pouvoir réfringent.

Une surface courbe qui termine un milieu diaphane, peut être confondue avec le plan tangent au point où le rayon la traverse;

parce que l'action des corps sur la lumière, n'étant sensible qu'à des distances imperceptibles, on peut négliger l'action du ménisque compris entre le plan tangent et la surface; on aura donc la direction du rayon dans le milieu, en élevant une perpendiculaire à cette surface au point où le rayon la rencontre, et en prenant les sinus d'incidence et de réfraction, dans le même rapport que si la surface était plane.

En passant d'un milieu dans un autre, la lumière s'y réfracte de manière que les sinus d'incidence et de réfraction sont en raison constante; mais alors la réfraction n'est due qu'à la différence des actions qu'elle éprouve de la part de ces milieux. Lorsqu'un rayon traverse plusieurs milieux transparens terminés par des surfaces planes et parallèles, sa vîtesse dans chaque milieu est égale et parallèle à celle qu'il aurait prise, s'il eût passé immédiatement du vide dans ce milieu. Généralement, de quelque manière que le rayon lumineux parvienne du vide dans un milieu transparent, sa vîtesse est la même.

L'hypothèse d'une action insensible à des distances sensibles, permet d'étendre ces résultats, aux couches infiniment petites d'un milieu diaphane de densité variable.

Au moyen de ces principes dont on est redevable à Newton, tous les phénomènes du mouvement de la lumière, à travers un nombre quelconque de milieux transparens et dans l'atmosphère, ont été soumis à des calculs rigoureux. Ces phénomènes ne déterminent point la loi de l'attraction des corps sur la lumière : ils ne l'assujétissent qu'à la condition d'être insensible à des distances sensibles.

Un milieu diaphane agit d'une manière différente, sur les rayons de diverses couleurs. C'est en vertu de cette différence, qu'un rayon de lumière blanche en traversant un prisme transparent, se décompose dans une infinité de couleurs. L'inégalité des vîtesses que l'on peut supposer aux divers rayons, ne suffit pas pour expliquer les phénomènes observés dans la dispersion de la lumière; car alors, cette dispersion serait la même pour tous les milieux qui réfractent également les rayons moyens; ce qui est contraire à l'expérience qui seule peut la déterminer.

On a tiré un parti très - avantageux, de ces variétés dans la dispersion de la lumière à travers des lentilles de différentes espèces de verre, pour détruire les couleurs dont les objets paraissent environnés dans les lunettes ordinaires; ce qui a procuré une grande perfection à ces instrumens si utiles à l'Astronomie.

Les lois précédentes du mouvement de la lumière, se modifient dans les cristaux diaphanes, et la lumière y présente un singulier phénomène qui fut d'abord observé dans le cristal d'Islande. Un rayon lumineux qui tombe perpendiculairement sur une face d'un rhomboïde naturel de ce cristal, se divise en deux faisceaux: l'un traverse le cristal sans changer sa direction: l'autre s'en écarte dans un plan parallèle au plan mené perpendiculairement à la face, par la ligne qui joint les deux angles solides obtus de ce rhomboïde, et qui, par conséquent, est également inclinée aux côtés de ces angles. Cette ligne est ce que l'on nomme axe du cristal, et l'on appelle section principale d'une face naturelle ou artificielle, un plan mené par cet axe, perpendiculairement à la face, et tout plan qui lui est parallèle.

La division du rayon lumineux a lieu relativement à une incidence quelconque; une partie suit la loi de la réfraction ordinaire; l'autre partie suit une loi reconnue par Huyghens, et qui, considérée comme un résultat de l'expérience, peut être mise au rang des plus belles découvertes de ce rare génie. Il y fut conduit par la manière ingénieuse dont il envisageait la propagation de la lumière qu'il concevoit formée des ondulations d'un fluide éthéré. Il supposait dans les milieux diaphanes non cristallisés, la vitesse de ces ondulations, plus petite que dans le vide, et la même dans tous les sens. Mais dans le cristal d'Islande, il imaginait deux espèces d'ondulations. La vitesse de la première était représentée comme dans les milieux non cristallisés, par les rayons d'une sphère dont le centre serait au point d'incidence du rayon lumineux, sur la face du cristal : la vîtesso de la seconde était variable et représentée par les rayons d'un ellipsoïde de révolution, aplati à ses pôles, ayant le même centre que la sphère précédente, et dont l'axe de révolution serait parallèle à l'axe du cristal. Huyghens n'assignait point la cause de cette variété d'ondulations; et les phénomènes singuliers qu'offre la lumière en passant d'un cristal dans un autre,

et dont nous parlerons ci-après, sont inexplicables dans son hypothèse. Cela joint aux difficultés que présente la théorie des ondes lumineuses, est la cause pour laquelle Newton et la plupart des Géomètres qui l'ont suivi, n'ont pas justement apprécié la loi qu'Huvghens y avait attachée. Ainsi cette loi a éprouvé le même sort que les belles lois de Kepler, qui furent long-temps méconnues, pour avoir été associées à des idées systématiques dont malheureusement ce grand homme a rempli tous ses ouvrages. Cependant Huyghens avait vérifié sa loi par un grand nombre d'expériences. L'excellent physicien Wollaston ayant sait par un moyen fort ingénieux, diverses expériences sur la double réfraction du cristal d'Islande; il les a trouvées conformes à cette loi remarquable. Enfin, Malus vient de faire à cet égard, une suite nombreuse d'expériences très-précises, sur les faces naturelles et artificielles de ce cristal; et il a constamment observé entre elles et la loi d'Huyghens, le plus parfait accord. On ne doit donc pas balancer à la mettre au nombre des plus certains, comme des plus beaux résultats de la physique. Des expériences directes ont fait voir à Malus, qu'elle s'étend au cristal de roche.

Voici maintenant un phénomène que la lumière présente après avoir subi une double réfraction. Si l'on place à une distance quelconque au dessous d'un cristal, un second cristal de la même matière ou d'une matière différente, et disposé de manière que les sections principales des faces opposées des deux cristaux soient parallèles; le rayon réfracté, soit ordinairement, soit extraordinairement par le premier, le sera de la même manière par le second; mais si l'on fait tourner l'un des cristaux, ensorte que les sections principales soient perpendiculaires entre elles, alors le rayon réfracté ordinairement par le premier cristal, le sera extraordinairement par le second, et réciproquement. Dans les positions intermédiaires, chaque rayon émergent du premier cristal se divisera à son entrée dans le second cristal, en deux faisceaux dont les intensités respectives paraissent être comme les carrés du sinus et du cosinus de l'angle que les sections principales font entre elles. Lorsqu'on eut fait remarquer à Huyghens, ce phénomène dans le cristal d'Islande; il convint avec la candeur qui caractérise

un ami sincère de la vérité, qu'il était inexplicable dans ses hypothèses; ce qui montre combien il est essentiel de les séparer de la loi de réfraction, qu'il en avait déduite. Ce phénomène indique avec évidence, que la lumière, en traversant les cristaux à double réfraction, reçoit deux modifications diverses en vertu desquelles une partie est rompue ordinairement, et l'autre partie est rompue extraordinairement. Mais ces modifications ne sont point absolues: elles sont relatives à la position du rayon par rapport à l'axe du cristal; puisqu'un rayon rompu ordinairement est rompu extraordinairement par un autre cristal, si les sections principales des faces opposées des deux cristaux sont perpendiculaires entre elles.

Il serait bien intéressant de rapporter la loi d'Huyghens à des forces attractives et répulsives de molécule à molécule, ainsi que Newton l'a fait à l'égard de la réfraction ordinaire; car c'est à ce terme que le Géomètre s'arrête, sans chercher à remonter aux causes de ces forces. Mais pour résoudre ce problème, il faudrait connaître la forme des molécules des milieux cristallisés, celle des molécules de la lumière, et les modifications qu'elle reçoit en pénétrant dans ces milieux. L'ignorance où nous sommes de toutes ces données, ne permet que d'appliquer à la réfraction et à la réflexion extraordinaires, les résultats généraux de l'action de ces forces. Cette application m'a conduit à une théorie nouvelle de ce genre de phénomènes, théorie dont l'accord avec l'expérience, ne laisse aucun lieu de douter qu'ils sont dus à des forces attractives et répulsives de molécule à molécule.

L'un des principes les plus généraux de l'action de ces forces, est celui des forces vives, d'après lequel l'accroissement du carré de la vîtesse d'une molécule de lumière qui a pénétré sensiblement dans un milieu diaphane, est constamment le même pour une direction déterminée, quelle que soit d'ailleurs la manière dont elle est entrée dans ce milieu. Cet accroissement exprime, comme on l'a vu, l'action du milieu sur la lumière, et son expression doit être beaucoup plus simple que celle de la loi de réfraction extraordinaire, qui la renferme, et qui dépend encore de la position de la face par laquelle le rayon lumineux a pénétré dans le cristal. Ainsi le problème de la réfraction se partage en deux autres; le

premier consiste à déterminer la loi de réfraction, correspondante à une loi connue de l'action du milieu: le second a pour objet de ramener cette dernière loi, à l'action réciproque des molécules du cristal et de la lumière. On vient de voir combien de données nous manquent pour le résoudre; mais le premier problème peut être résolu par le principe de la moindre action, indépendamment de ces données.

· Ce principe a généralement lieu dans le mouvement d'un point soumis à des forces attractives et répulsives. En l'appliquant à la lumière, on peut faire abstraction du très-petit arc qu'elle décrit, en passant du vide dans un milieu diaphane, et supposer son mouvement uniforme, lorsqu'elle y a pénétré d'une quantité sensible. Le principe de la moindre action se réduit donc alors à ce que la lumière parvient d'un point pris au-dehors, à un point pris dans l'intérieur du cristal, de manière que si l'on ajoute le produit de la droite qu'elle décrit au-dehors par sa vîtesse primitive, au produit de la droite qu'elle décrit au-dedans, par sa vîtesse actuelle, la somme fait un minimum. Maintenant, la direction de la vîtesse, est déterminée par les angles qu'elle forme avec deux axes perpendiculaires entre eux : la loi de l'action du milieu sur la lumière, donne par le principe des forces vives, sa vîtesse, lorsqu'elle a pénétré dans le milieu diaphane; le principe de la moindre action donnera donc entre les angles que font avec les deux axes, ses directions avant et après son passage dans le milieu, deux équations différentielles qui déterminent la direction de la lumière réfractée, en fonction des angles formés par la direction primitive, avec les deux axes. On aura ainsi la loi de la réfraction extraordinaire, correspondante à celle de l'action du milieu sur la

La loi d'action, la plus simple, est celle dont l'expression se réduit à une constante : on trouve alors par la méthode précédente, que les sinus de réfraction et d'incidence sont constamment dans le même rapport, ce qui est conforme à ce que l'on a yu.

Après cette loi, vient celle dont l'expression ne renferme que la première et la seconde puissance des sinus des angles, que le rayon réfracté forme avec les deux axes. Relativement au cristal

d'Islande, si l'on prend pour un des axes, celui du cristal; comme cet axe est symétrique par rapport aux trois côtés qui le comprennent. il est facile de voir que l'expression précédente ne doit dépendre que de l'angle qu'il fait avec la direction du rayon réfracté, et qu'elle doit se réduire à une constante plus au produit d'une autre constante, par le carré du sinus de cet angle. En la substituant dans les deux équations différentielles du principe de la moindre action, on parvient exactement aux formules que donne la loi d'Huyghens; d'où il suit que cette loi satisfait à-la-fois au principe de la moindre action, et à celui des forces vives; ce qui ne laisse aucun lieu de donter qu'elle est due à l'action de forces attractives et répulsives donf l'action n'est sensible qu'à des distances imperceptibles. Jusqu'ici, cette loi n'était qu'un résultat de l'observation, approchant de la vérité, dans les limites des erreurs auxquelles les expériences les plus précises sont encore assujéties : maintenant, la simplicité de la loi d'action, dont elle dépend, doit la faire considérer comme une loi rigoureuse.

Si l'on prend pour unité, la vîtesse de la lumière dans le vide, la vitesse du rayon réfracté extraordinairement, sera exprimée par une fraction dont le numérateur est l'unité, et dont le dénominateur est le rayon de l'ellipsoïde d'Huyghens, suivant lequel la lumière se dirige. La vîtesse du rayon ordinaire dans le cristal, est constante dans tous les sens, et égale à l'unité divisée par le rapport du sinus de réfraction au sinus d'incidence. Huyghens a reconnu par l'expérience, que le demi-axe de révolution de son ellipsoïde, représente à fort peu près ce rapport; ce qui lie entre elles, les deux réfractions ordinaire et extraordinaire. Mais le principe de la continuité sait voir que cette liaison remarquable est un résultat nécessaire de l'action du cristal sur la lumière, et qu'il dépend de la seule considération qu'un rayon ordinaire se change en extraordinaire, lorsque l'on fait varier convenablement sa position par rapport à l'axe d'un nouveau cristal. En effet, si ce rayon est perpendiculaire à la face de ce cristal coupé perpendiculairement à son axe, il est clair qu'une inclinaison infiniment petite de l'axe sur la face, produite par une section infiniment voisine de la première, suffit pour faire du rayon ordinaire, un rayon extraordinaire, et réciproquement.

Cette inclinaison ne peut qu'altérer infiniment peu l'action du cristal, et la vitesse du rayon dans son intérieur; cette vitesse est donc alors celle du rayon extraordinaire, et par conséquent, elle est égale à l'unité divisée par le demi-axe de révolution de l'ellipsoïde, Elle surpasse ainsi généralement celle du rayon extraordinaire, la différence des carrés de ces deux vitesses étant proportionnelle au carré du sinus de l'angle que l'axe forme avec ce dernier rayon, Cette différence représente celle de l'action du cristal sur ces deux espèces de rayons: elle est la plus grande, lorsque le rayon incident sur une surface artificielle menée par l'axe du cristal, est dans un plan perpendiculaire à cet axe: alors la réfraction extraordinaire suit la même loi que la réfraction ordinaire; seulement, le rapport des sinus de réfraction et d'incidence, qui dans le cas de la réfraction ordinaire, est le demi-petit axe de l'ellipsoïde, est égal au demi-grand axe, dans la réfraction extraordinaire.

Suivant Huyghens, la vitesse du rayon extraordinaire dans le cristal, est exprimée par le rayon même de l'ellipsoide; son hypothèse ne satisfait donc point au principe de la moindre action. Mais il est remarquable qu'elle satisfasse au principe de Fermat, suivant lequel la lumière parvient d'un point pris au-dehors du cristal, à un autre point intérieur, dans le moins de temps possible; car il est visible que ce principe revient à celui de la moindre action. en y renversant l'expression de la vîtesse. L'identité de la loi d'Huyghens avec le principe de Fermat, a lieu généralement. quel que soit le sphéroïde qui dans son hypothèse, représente la vîtesse de la lumière dans l'intérieur du cristal; ensorte qu'elle donne toutes les lois de réfraction, qui peuvent être dues à des forces attractives et répulsives. Mais le sphéroïde elliptique satisfait aux phénomènes de double réfraction, observés jusqu'à présent; ensorte qu'ici, comme dans les mouvemens et la figure des corps célestes, la nature en allant du simple au composé, fait succéder. les formes elliptiques à la forme circulaire.

La loi de la réflexion de la lumière, par les surfaces des cristaux diaphanes cristallisés, se déduit encore des principes de la moindre action et des forces vives; mais on peut la rattacher à la loi de la réfraction, par les considérations suivantes. Quelle que soit, la nature de la force qui fait rejaillir la lumière à la surface des corps, on peut la considérer comme une force répulsive qui rend en sens contraire à la lumière, la vîtesse qu'elle lui a fait perdre; de même que l'élasticité restitue aux corps, en sens contraire, la vîtesse qu'elle a détruite; or on sait que dans ce cas, le principe de la moindre action subsiste toujours. A l'égard d'un rayon lumineux soit ordinaire, soit extraordinaire, réfléchi par la surface extérieure d'un corps, ce principe se réduit à ce que la lumière parvient d'un point à un autre, par le chemin le plus court de tous ceux qui rencontrent la surface, puisqu'en vertu du principe des forces vives, sa vitesse est la même avant et après la réflexion. La condition du chemin le plus court donne l'égalité des angles de réflexion et d'incidence, dans un plan perpendiculaire à la surface, ainsi que Ptolémée l'a remarqué. C'est la loi générale de la réflexion à la surface extérieure des corps.

Mais lorsque la lumière en entrant dans un cristal, s'est divisée en rayons ordinaires et extraordinaires, une partie de ces rayons est réfléchie par la surface intérieure à leur sortie du cristal. En se réfléchissant, chaque rayon, soit ordinaire, soit extraordinaire, se divise en deux autres; ensorte qu'un rayon solaire, en pénétrant dans le cristal, forme par sa réflexion partielle à la surface de sortie, quatre faisceaux distincts dont nous allons déterminer les directions.

Supposons d'abord, les faces d'entrée et de sortie, que nous hommerons première et seconde face, parallèles. Donnons au cristal, une épaisseur insensible, et cependant plus grande que la sphère d'activité sensible des deux faces. Dans ce cas, on prouvera par le raisonnement précédent, que les quatre faisceaux réfléchis n'en formeront sensiblement qu'un seul situé dans le plan d'incidence du rayon générateur, et faisant avec la première face, l'angle de réflexion égal à l'angle d'incidence. Restituons maintenant au cristal, son épaisseur: il est clair que dans ce cas, les faisceaux réfléchis après leur sortie par la première face, prendront des directions parallèles à celles qu'ils avaient prises dans le premier cas; ces faisceaux seront donc parallèles entre eux et au plan d'incidence du rayon générateur: seulement, au lieu d'être sensiblement

confondus, comme dans le premier cas, ils seront séparés par des distances d'autant plus grandes, que le cristal aura plus d'épaisseur.

Maintenant, si l'on considère un rayon quelconque intérieur sortant en partie par la seconde face, et en partie réfléchi par elle en deux faisceaux; le rayon sorti sera parallèle au rayon générateur; car la lumière en sortant du cristal, doit prendre une direction parallèle à celle qu'elle avait en y entrant, puisque les deux faces d'entrée et de sortie étant supposées parallèles, elle éprouve en sortant, l'action des mêmes forces qu'elle avait éprouvées en entrant, mais en sens contraire. Concevons par la direction du rayon sorti, un plan perpendiculaire à la seconde sace; et dans ce plan, imaginons au-dehors du cristal, une droite passant par le point de sortie; et formant avec la perpendiculaire à la face, mais du côté opposé à la direction du rayon sorti, le même angle que cette direction: enfin concevons un rayon solaire, entrant suivant cette droite dans le cristal. Ce rayon se partagera à son entrée, en deux autres qui au sortir du cristal par la première face, prendront des directions parallèles au rayon solaire avant son entrée par la seconde face. Elles seront visiblement parallèles aux directions des deux faisceaux réfléchis, ce qui ne peut avoir lieu qu'autant que les deux rayons dans lesquels se divise le rayon solaire en entrant par la seconde face, se confondent respectivement dans l'intérieur du cristal, avec les directions des deux rayons réfléchis. Les formules relatives à la réfraction extraordinaire donnent les directions des rayons dans lesquels le rayon solaire se divise; elles donneront donc aussi, celles des deux faisceaux réfléchis dans l'intérieur du cristal.

Si les deux faces du cristal ne sont pas parallèles, on aura par les formules de la réfraction extraordinaire, les directions des deux rayons dans lesquels le rayon générateur se divise, en pénétrant par la première face. On aura ensuite par les mêmes formules, les directions de chacun de ces rayons, à leur sortie par la seconde face, d'où l'on conclura par la construction précédente, les directions des deux rayons solaires qui pénétrant dans le cristal par la seconde face, formeront quatre rayons dont les directions seront les mêmes que celles des quatre faisceaux du rayon générateur,

réfléchis par cette face ; directions qui seront données par les formules de la réfraction extraordinaire. On aura donc ainsi par ces formules, tous les phénomènes de la réflexion de la lumière par les surfaces des cristaux diaphanes. M. Malus a fait à cet égard, un grand nombre d'expériences dont l'accord remarquable avec les lois précédentes, déduites des principes de la moindre action et des forces vives, achève de démontrer que les phénomènes de la réfraction et de la réflexion de la lumière dans ces cristaux, sont le résultat des forces attractives et répulsives. Il a de plus observé ce phénomène très-singulier de la réflexion de la lumière par tous les corps, qui consiste, en ce que sous un angle d'incidence déterminé pour chacun d'eux, toute la lumière réfléchie est polarisée. ensorte que l'une des deux images d'un objet vu par la réflexion de leurs surfaces, à travers un prisme de cristal d'Islande, dans le plan de sa section principale, disparaît totalement : elle reparaît au-delà de cette limite d'incidence. Les seuls métaux ont paru jusqu'ici faire exception à cette loi générale; seulement l'image qui devrait disparaître, s'affaiblit. La lumière polarisée en sens contraire de celle que réfléchit la surface polie de tout autre corps, est absorbée en entier par le corps, lorsqu'elle tombe sous l'angle de polarisation, sur sa surface.

L'aberration des étoiles dépend, comme on l'a vu dans le second livre, de la vîtesse de leur lumière, combinée avec celle de la terre dans son orbite; elle ne serait donc pas la même pour tous ces astres, si leurs rayons parvenaient à nous avec des vîtesses différentes. Il serait difficile, vu la petitesse de l'aberration, de connaître exactement par son moyen, ces différences: mais la grande influence de la vîtesse de la lumière, sur sa réfraction en passant dans un milieu diaphane, fournit une méthode très-précise pour déterminer les vîtesses respectives des rayons lumineux. Il suffit pour cela, de fixer un prisme de verre, au-devant de l'objectif d'une lunette, et de mesurer la déviation qui en résulte dans la position apparente des astres. On a reconnu de cette manière, que les vîtesses de la lumière directe et réfléchie, de tous les objets célestes et terrestres, étaient exactement les mêmes. Les expériences qu'Arago a bien voulu faire à ma prière, ne laissent aucun doute

sur ce point de physique, important à l'Astronomie, en ce qu'il prouve la justesse des formules de l'aberration des astres.

La vitesse de la lumière des étoiles, n'est pas, relativement à un observateur, la même dans tous les points de l'orbe terrestre. Elle est la plus grande, lorsque son mouvement est contraire à celui de la terre: elle est la plus petite, quand ces deux mouvemens conspirent. Quoique la différence qui en résulte dans la vitesse rélative d'un rayon lumineux, ne s'élève qu'à un cinq-millième environ de la vîtesse totale; cependant elle peut produire des changemens sensibles dans la déviation de la lumière qui traverse un prisme. Des expériences très-précises, faites par Arago, ne les ayant point fait appercevoir, on doit en conclure que la vîtesse relative d'un rayon lumineux homogène est constamment la même, et probablement déterminée par la nature du fluide qu'il met en mouvement dans nos organes, pour produire la sensation de lumière. Cette conséquence paraît encore indiquée par l'égalité de vîtesse, de la lumière émanée des astres et des objets terrestres; égalité qui sans cela, serait inexplicable. Est-il invraisemblable de supposer que les corps lumineux lancent une infinité de rayons doués de vitesses différentes; et que les seuls rayons dont la vitesse est comprise dans certaines limites, ont la propriété d'exciter la sensation de lumière, tandis que les autres ne produisent qu'une chaleur obscure? N'est-ce pas ainsi que les corps chauds deviennent lumineux, par un accroissement de chaleur ; et les belles expériences d'Herschell sur la chaleur du spectre solaire, ne prouvent-elles pas que le soleil émet des rayons chauds invisibles, dont plusieurs moins réfrangibles que les rayons rouges eux-mêmes, paraissent doués d'une plus grande vîtesse?

Les phénomènes de la double réfraction et de l'aberration des étoiles, me paraissent donner au système de l'émission de la lumière, sinon une certitude entière, au moins une extrême probabilité. Ces phénomènes sont inexplicables dans l'hypothèse des ondulations d'un fluide éthéré. La propriété singulière d'un rayon polarisé par un cristal, de ne plus se partager en passant dans un second cristal parallèle au premier, indique évidemment, des actions différentes d'un même cristal, sur les diverses faces d'une

molécule de lumière, dont les mouvemens sont, comme on l'a vu, soumis aux lois générales du mouvement des projectiles.

Descartes est le premier qui ait publié la vraie loi de la réfraction ordinaire, que Kepler et d'autres physiciens avaient inutilement cherchée. Huyghens affirme dans sa Dioptrique, qu'il a vu cette loi présentée sous une autre forme, dans un manuscrit de Suellius. qu'on lui a dit avoir été communiqué à Descartes, et d'où peut-être, ajoute-t-il, ce dernier a tiré le rapport constant des sinus de réfraction et d'incidence. Mais cette réclamation tardive d'Huyghens en faveur de son compatriote, ne me paraît pas suffisante pour enlever à Descartes, le mérite d'une découverte que personne ne lui a contestée de son vivant. Ce grand Géomètre l'a déduite de ces deux propositions; l'une, que la vîtesse de la lumière parallèle à la surface d'incidence, n'est altérée ni par la réflexion, ni par la réfraction; l'autre, que la vîtesse est différente dans les divers milieux diaphanes, et plus grande dans ceux qui réfractent plus, la lumière. Descartes en a conclu que si dans le passage d'un milieu dans un autre moins réfringent, l'inclinaison du rayon lumineux est telle que l'expression du sinus de réfraction soit égale ou plus grande que l'unité; alors la réfraction se change en réflexion, les deux angles de réflexion et d'incidence étant égaux. Tous oes résultats sont conformes à la nature; mais les preuves que **Descartes** en a données, sont inexactes, et il est assez remarquable qu'Huyghens et lui soient parvenus au moyen de théories incertaines ou fausses, aux véritables lois de la réfraction de la lumière. Descartes eut à ce sujet avec Fermat, une longue querelle que les Cartésiens prolongèrent après sa mort, et qui fournit à Fermat, l'occasion heureuse d'appliquer sa belle méthode de maximis et minimis, aux expressions radicales. En considérant cet objet sous un point de vue métaphysique, il chercha la loi de la réfraction, par le principe que nous avons exposé précédemment, et il fut très-surpris d'arriver à celle de Descartes. Mais ayant trouvé que pour satisfaire à son principe, la vîtesse de la lumière devait être plus petite dans les milieux diaphanes, que dans le vide, pendant que Descartes la faisait plus grande, ce qui lui paraissait invraisemblable; il se confirma dans la pensée que la démonstration de ce grand Géomètre était fautive.

On a vu dans le chapitre II du troisième livre, comment le principe de Fermat a conduit à celui de la moindre action, dont l'application au mouvement de la lumière dans les corps diaphanes cristallisés, fait dépendre les lois de la réfraction et de la réflexion, de celle de l'action de ces corps sur la lumière; ce qui prouve que ce genre de phénomènes est le résultat de forces attractives et répulsives, et place la loi d'Huyghens au rang des vérités rigoureuses.

En examinant avec attention, les phénomènes capillaires aussi variés que ceux du mouvement de la lumière; j'ai reconnu qu'ils dépendent comme eux, de forces attractives qui cessent d'être sensibles aux plus petites distances perceptibles à nos sens; et je suis parvenu, au moyen de cette propriété seule, à les soumettre à une analyse rigoureuse. Considérons d'abord le principal de ces phénomènes, celui de l'ascension et de la dépression des liquides dans les tubes très-étroits.

Si l'on trempe dans une eau dormante, le bout d'un tube cylindrique de verre, fort menu; l'eau s'élevera dans ce tube, à une hauteur réciproquement proportionnelle au diamètre de sa cavité. Si ce diamètré est d'un millimètre, et si l'intérieur du tube est très-humecté; la hauteur de l'eau au-dessus du niveau, sera de trente millimètres et demi à fort peu près, à la température de dix degrés. Tous les liquides présentent des phénomènes semblables; mais leurs élévations ne sont pas les mêmes : quelques-uns, au lieu de s'élever, s'abaissent au-dessous du niveau; mais la dépression est toujours en raison inverse du diametre intérieur du tube : cette dépression est d'environ treize millimètres pour le mercure, dans un tube de verre dont le diamètre de la cavité, est d'un millimètre. Des tubes de marbre ou de toute autre matière, offrent des résultats analogues aux précédens : s'ils sont très-étroits, les liquides s'y élèvent ou s'y abaissent réciproquement aux diamètres de leurs cavités.

Dans les tubes et généralement dans les espaces capillaires, la surface du liquide est concave, lorsqu'il s'élève au-dessus du niveau : elle est convexe, lorsqu'il s'abaisse au-dessous.

Tous ces phénomènes ont lieu dans le vide, comme en plein

__

air; par conséquent, ils ne dépendent point de la pression de l'atmosphère; ils ne peuvent donc résulter que de l'attraction des molécules liquides les unes par les autres et par les parois qui les renferment.

L'épaisseur plus ou moins grande des parois, n'a aucune infinence sensible sur ces phénomènes : l'élévation et la dépression des liquides dans les tubes capillaires sont toujours les mêmes, quelle que soit cette épaisseur, pourvu que les diamètres intérieurs soient égaux. Les couches cylindriques qui sont à une distance sensible de la surface intérieure, ne contribuent donc point à l'ascension du liquide; quoique dans chacune d'elles, prise séparément, il doive s'élever au-dessus du niveau. Il est naturel de penser que leur action n'est point empêchée par l'interposition des couches qu'elles embrassent, et que les attractions de ce genre se transmettent à travers les corps, ainsi que la pesanteur; l'action des couches sensiblement éloignées de la surface intérieure du tube, ne disparaît donc qu'à raison de leur distance au liquide; d'où il suit que l'action des corps sur les liquides, comme sur la lumière, n'est sensible qu'à des distances insensibles.

Mais la force attractive agit d'une manière bien différenté dans la production des phénomènes capillaires, et dans la réfraction de la lumière. Ce dernier phénomène est dû à l'action entière des milieux diaphanes; et lorsqu'ils sont terminés par des surfaces courbes, on peut, comme on l'a vu, négliger l'action du ménisque que retranche un plan tangent à ces surfaces; au lieu que les phénomènes capillaires sont produits par l'action de ce ménisque. En effet, si par l'axe d'un tube de verre, plongeant verticalement dans un vase plein d'eau, on imagine un canal infiniment étroit qui se recourbant au-dessous du tube, aille aboutir loin de ce tube, à la surface de l'eau du vase; l'action de l'eau du tube, sur l'eau que contient ce canal, sera moindre que l'action de l'eau du vase, sur celle que renferme l'autre extrémité du canal : la différence sera l'action du ménisque aqueux, que retrancherait un plan tangent au point le plus bas de la surface de l'eau du tube; action qui tend évidemment à soulever le liquide du canal, et à le maintenir suspendu en équilibre au-dessus du niveau. Il était donc nécessaire

pour l'explication des phénomènes capillaires, de connaître l'action de semblables ménisques. En appliquant à cet objet, l'analyse; je suis parvenu à ce théorème général.

« Dans toutes les lois où l'attraction n'est sensible qu'à des distances insensibles, l'expression analytique de l'action d'un corps bliquide terminé par une surface courbe, sur un canal intérieur infiniment étroit et perpendiculaire à cette surface dans un point quelconque, est composée de trois termes : le premier incomparablement supérieur aux deux autres, exprime l'action du corps, en le supposant terminé par un plan : le second est une fraction qui a pour numérateur, une constante dépendante de l'intensité et de la loi de la force attractive, et pour dénominateur, le plus petit des rayons osculateurs de la surface à ce point : le proisième terme est une fraction qui a le même numérateur que la précédente, et dont le dénominateur est le plus grand des rayons osculateurs de la surface au même point. »

Les rayons osculateurs doivent être supposés positifs, si la surface est convexe, et négatifs, si elle est concave. Par action du corps sur le canal, on doit entendre la pression que le liquide renfermé dans le canal, exercerait en vertu de l'attraction de ce corps, sur une base située dans l'intérieur du canal perpendiculairement à ses côtés, cette base étant prise pour unité.

Au moyen de ce théorème et des lois de l'équilibre des fluides, on peut facilement obtenir l'équation différentielle de la figure que doit prendre une masse liquide animée par la pesanteur, et renfermée dans un vase d'une forme donnée : l'analyse conduit à une équation aux différences partielles du second ordre, dont l'intégrale se refuse à toutes les méthodes commes : si la figure est de révolution, l'équation se réduit aux différences ordinaires, et peut être intégrée par une approximation fort convergente, lorsque la surface est très-petite. On trouve ainsi que dans les tabes cylindriques fort étroits, la surface du liquide approche d'autant plus de celle d'un segment sphérique, que le diamètre intérieur du tube est plus petit. Si dans les divers tubes cylindriques de même matière, ces segmens sont semblables, les rayons de leurs surfaces sont en raison du diamètre des tubes; or cette similitude des segmens sphériques

paraîtra évidente, si l'on considère que la distance où l'action du tube cesse d'être sensible, est imperceptible, ensorte que si par le moyen d'un très-fort microscope, on parvenait à la faire paraître égale à un millimètre, il est vraisemblable que le même pouvoir amplifiant donnerait au diamètre du tube, une grandeur apparente de plusieurs mètres; la surface intérieure du tube peut donc être considérée comme étant plane à très-peu près, dans un rayon égal à celui de sa sphère d'activité sensible; le liquide dans cet intervalle, s'abaisse donc ou s'élève depuis cette surface, comme si elle était plane. Au-delà, ce liquide n'étant soumis sensiblement qu'à son action sur lui-même, sa surface est celle d'un segment sphérique dont les plans tangens extrêmes étant ceux de la surface liquide, aux limites de la sphère d'activité sensible du tube, sont à très-peu près dans les divers tubes, également inclinés à leurs parois; d'où il suit que ces divers segmens sont semblables.

Le rapprochement de ces résultats donne la vraie cause de l'élévation et de l'abaissement des liquides dans les tubes capillaires, en raison inverse de leurs diamètres. Ainsi quand le liquide s'élève dans un tube cylindrique, sa surface devenant alors concave, son action sur le canal dont on a parlé ci-dessus, est moindre que l'action du liquide du vase sur le même canal : la différence est, par le théorème précédent, égale à une constante divisée par le rayon du segment sphérique dont la surface est à très-peu près celle du liquide; or les segmens étant semblables dans les divers tubes, leurs rayons sont comme les diamètres intérieurs des tubes; cette différence et l'élévation du liquide au-dessus du niveau, dont elle est la cause, sont donc en raison inverse de ces diamètres.

Si la surface du liquide intérieur est convexe, ce qui a lieu pour le mercure dans un tube de verre; l'action du liquide sur le canal, sera plus grande que celle du liquide du vase; le liquide doit donc s'abaisser en raison de cette différence, et par conséquent en raison inverse du diamètre intérieur du tube.

On peut donc au moyen de l'élévation ou de la dépression observée d'un liquide, dans un tube cylindrique capillaire d'un diamètre connu, déterminer celle du même liquide dans un tube capillaire d'un diamètre quelconque. Mais si le tube n'est point

cylindrique, et sì sa surface intérieure est celle d'un prisme quelconque vertical et droit; quelle sera l'élévation ou la dépression
moyenne du liquide dans ce tube? La solution de ce problème
semble exiger l'intégration de l'équation à la surface du liquide
intérieur, intégration impossible dans l'état actuel de l'analyse.
Heureusement, cette équation traitée par une méthode particulière,
conduit à ce résultat remarquable qui renferme cette solution et
l'explication de beaucoup de phénomènes capillaires. « Quelles que
» soient la figure et les dimensions du prisme; le volume du
» liquide élevé ou déprimé par l'action capillaire, est proportionnel
» au contour de sa section intérieure, faite par un plan horizontal. »
On peut le démontrer sans analyse, en considérant sous le point
de vue suivant, les effets de l'action capillaire.

Concevons que le liquide s'élève dans un prisme vertical et droit : il est clair que cela n'a lieu que par l'action des parois du tube sur le liquide, et du liquide sur lui-même : une première lame de liquide, contiguë aux parois, est soulevée par cette action : cette lame en soulève une seconde, celle-ci, une troisième, et ainsi de suite, jusqu'à ce que le poids du volume de liquide soulevé, balance les forces attractives qui tendent à l'élever davantage. Pour déterminer ce volume dans l'état d'équilibre, imaginons à l'extrémité inférieure du tube, un second tube idéal dont les parois infiniment minces soient le prolongement de la surface intérieure du premier tube, et qui n'ayant aucune action sur le liquide, n'empêchent point l'action réciproque du tube et du liquide. Supposons que ce second tube soit d'abord vertical, qu'ensuite il se recourbe horizontalement, et qu'enfin il reprenne sa direction verticale, en s'élevant jusqu'à la surface du liquide, et en conservant dans toute son étendue la même forme et la même largeur. Il est visible que dans l'état d'équilibre du liquide, la pression doit être la même dans les deux branches verticales du canal composé du premier et du second tube. Mais comme il y a plus de liquide dans la première branche verticale formée du premier tube et d'une partie du second, que dans l'autre branche verticale; il faut que l'excès de pression, qui en résulte, soit détruit par les attractions verticales du prisme et du liquide, sur le liquide contenu dans cette première branche. Analysons avec soin, ces attractions diverses.

Considérons d'abord celles qui ont lieu vers la partie inférieure du premier tube. Le prisme étant supposé vertical et droit, sa base est horizontale. Le liquide contenu dans le second tube, est attiré verticalement vers le bas, 1° par lui-même; 2° par le liquide environnant ce second tube. Mais ces deux attractions sont détruites par les attractions semblables qu'éprouve le liquide contenu dans la seconde branche verticale du canal, près de la surface de niveau de la masse entière liquide; on peut donc en faire abstraction ici. Le liquide de la première branche verticale du second tube, est encore attiré verticalement par le liquide du premier tube; mais cette attraction est détruite par l'attraction qu'il exerce lui-même sur ce dernier liquide; on peut donc encore ici faire abstraction de ces deux attractions réciproques. Enfin, le liquide du second tube est attiré verticalement en haut par le premier tube, et il en résulte une force verticale que nous désignerons par première force, et qui contribue à détruire l'excès de pression dû à l'élévation du liquide, dans le premier tube.

Examinons présentement les forces dont le liquide du premier tube est animé. Il éprouve dans sa partie inférieure, les attractions suivantes : 1°. Il est attiré par lui-même; mais les attractions réciproques d'un corps ne lui impriment aucun mouvement, s'il est solide; et l'on peut, sans troubler l'équilibre, concevoir le liquide du premier tube, consolidé. 2°: Ce liquide est attiré par le liquide inférieur du second tube; mais on vient de voir que les attractions réciproques de ces deux liquides se détruisent, et qu'il n'en faut point tenir compte. 3°. Il est attiré par le liquide extérieur qui environne le second tube, et de cette attraction résulte une force verticale dirigée vers le bas, et que nous désignerons par seconde force. Nous observerons ici que si la loi d'attraction, relative à la distance, est la même pour les molécules du premier tube, et pour celles du liquide, ensorte qu'elles ne différent que par leurs intensités à volume égal; ces intensités sont entre elles dans le rapport de la première à la seconde force; car la surface intérieure du liquide environnant le second tube, est la même que la surface intérieure du premier tube; les deux masses ne différent donc que par leur épaisseur; mais l'attraction des masses devenant insensible

à des distances sensibles, la différence de leurs épaisseurs n'en produit aucune dans leurs attractions, pourvu que ces épaisseurs soient sensibles. 4°. Enfin, le liquide du premier tube est attiré verticalement en haut par ce tube. Concevons, en effet, ce liquide partagé dans une infinité de petites colonnes verticales : si par l'extrémité supérieure d'une de ces colonnes, on mène un plan horizontal; la partie du tube, inférieure à ce plan, ne produit aucune force verticale dans la colonne; il n'y a donc de force verticale produite par ce tube, que celle qui est due à sa partie supérieure au plan; et il est visible que l'attraction verticale de cette partie du tube sur la colonne, est la même que celle du tube entier sur une colonne égale et semblablement placée dans le second tube. La force verticale entière produite par l'attraction du premier tube, sur le liquide qu'il renferme, est donc égale à celle que produit l'attraction de ce tube sur le liquide renfermé dans le second tube; cette force est donc égale à la première force.

En réunissant toutes les attractions verticales qu'éprouve le liquide renfermé dans la première branche verticale du canal; on aura une résultante verticale dirigée de bas en haut, et égale à deux fois la première force, moins une fois la seconde. Cette résultante doit balancer l'excès de pression dû au poids du volume de liquide élevé au-dessus du niveau; elle est donc égale à ce volume multiplié par la pesanteur spécifique du liquide. Maintenant, l'action du tube n'étant sensible qu'à des distances insensibles, le prisme n'agit que sur les colonnes du liquide, extrêmement voisines de sa surface: on peut ainsi faire abstraction de la courbure de ces parois, et les considérer comme étant développées sur un plan : la première et la seconde force seront alors égales au produit de la largeur de ce plan, ou, ce qui revient au même, du contour de la base intérieure du tube, par des coefficiens constans qui pourront désigner, par ce qui précède, les intensités respectives des attractions des molécules du tube et du liquide, à égalité de volume; la résultante dont on vient de parler, sera donc proportionnelle à ce contour, et par conséquent le volume du liquide élevé, lui sera pareillement proportionnel.

La moyenne entre les hauteurs de tous les points de la surface

supérieure de ce liquide, au-dessus du niveau, est le quotient de la division de son volume, par la base du prisme; cette hauteur est donc proportionnelle au contour du prisme, divisé par sa base.

Si le prisme est un cylindre, le contour de sa base est proportionnel à son diamètre, et la base est proportionnelle au carré du diamètre; la hauteur moyenne du liquide est donc en raison inverse du diamètre. Lorsque le prisme est très-étroit, cette hauteur diffère très-peu de celle du point le plus bas de la surface du liquide intérieur. Si le liquide mouille les parois du tube, comme l'alcohol et l'eau mouillent le verre; alors cette surface est à fort peu près celle d'une demi-sphère; et il est facile d'en conclure que pour avoir sa hauteur moyenne au-dessus du niveau, il faut ajouter à celle de son point le plus bas, un sixième du diamètre du tube; cette dernière hauteur ainsi corrigée est donc réciproque au diamètre du tube. Gay-Lussac a confirmé ces résultats de la théorie, par un grand nombre d'expériences faites avec un soin extrême et par des moyens très-précis, sur l'eau, l'alcohol à diverses densités, les huiles volatiles, etc.

Le rapport constant du volume de liquide élevé, au contour de la base, subsiste dans le cas même où la courbure de ce contour est discontinue, lorsque ce contour est, par exemple, un polygone rectiligne. Car ce rapport ne peut être troublé que par l'action du tube vers ses arêtes, et seulement dans une étendue égale à celle de la sphère d'activité sensible de ses molécules : cette étendue étant imperceptible, l'erreur doit être entièrement insensible ; on peut donc étendre le rapport précédent, à des prismes de bases quelconques. Lorsque ces bases sont semblables, elles sont proportionnelles aux carrés des lignes homologues, et leurs contours sont proportionnels à ces lignes; les contours divisés par leurs bases respectives, et par conséquent les hauteurs moyennes du liquide élevé, sont réciproques à ces lignes.

Lorsque les contours des bases sont des polygones circonscrits au même cercle, les bases sont égales au produit de ces contours par la moitié du rayon du cercle; le rapport des contours aux bases est donc le même, et égal à l'unité divisée par cette moitié. La hauteur moyenne du liquide élevé est donc la même dans tous ces tubes.

Si la base du prisme est un rectangle dont l'un des côtés soit très-grand, et l'autre, très-petit; le rapport du contour à la base, sera à fort peu près égal à l'unité divisée par la moitié du petit côté. Lorsque la base est un cercle dont ce petit côté est le rayon; le rapport du contour à la base, est le même que le précédent; l'élévation moyenne du liquide est donc dans ces deux cas, la même. Le premier cas est à très-peu près celui de deux plans parallèles qui trempent dans le liquide, par leurs extrémités inférieures: ainsi la hauteur moyenne du liquide entre deux plans parallèles, est égale à cette hauteur dans un tube cylindrique dont le rayon intérieur est égal à la distance mutuelle des plans; ce qui est parfaitement d'accord avec l'expérience.

Si l'on place verticalement un prisme, dans un autre prisme creux et vertical, et que l'on plonge leurs extrémités inférieures, dans un liquide; le volume de ce liquide élevé entre la surface extérieure du premier prisme, et la surface intérieure du second, sera proportionnel à la somme des contours de leurs bases, l'une, extérieure, et l'autre, intérieure. Ce théorème peut se démontrer facilement par la méthode précédente. Il en résulte que si les bases sont des polygones semblables, la hauteur moyenne du liquide élevé entre les prismes, est la même que dans un prisme semblable dont chaque côté de la base intérieure, est la différence des côtés correspondans des autres bases.

Lorsqu'un prisme creux qui par sa partie inférieure, trempe dans un liquide, est oblique à l'horizon; le volume du liquide élevé dans le prisme, au-dessus du niveau, multiplié par le sinus de l'inclinaison des arêtes du prisme, est constamment le même, quelle que soit cette inclinaison. En effet, ce produit exprime le poids du volume du liquide élevé, décomposé parallèlement aux côtés du prisme : ce poids ainsi décomposé doit balancer l'action du prisme et du liquide extérieur, sur le liquide qu'il renferme, action qui est évidemment la même dans toutes les inclinaisons du prisme; la hauteur verticale moyenne du liquide élevé, est donc constamment la même.

Il suit de ce qui précède, que si le double de l'intensité de la force attractive du tube sur le liquide, est moindre que celle du liquide sur lui-même; l'expression du volume de liquide élèvé au-dessus du niveau, devient négative; l'élévation se change donc alors en dépression: avec ce changement, les résultats précédens subsistent toujours; ainsi la dépression moyenne du liquide dans des tubes cylindriques, est en raison inverse de leurs diamètres.

L'angle formé par l'intersection des surfaces du liquide intérieur et du tube, varie avec les intensités de leurs forces attractives. L'analyse conduit à ce théorème : « L'intensité de l'attraction du » tube sur le liquide, est égale à l'intensité de l'attraction du liquide » sur lui-même, multipliée par le carré du cosinus de la moitié » de l'angle que sait avec la partie inférieure des parois du tube, » un plan qui touche la surface liquide, à l'extrémité de la sphère » d'activité sensible du tube; angle différent de celui que forment » avec ces parois, les côtés de cette surface, immédiatement en » contact avec eux. » Cet angle est donc nul, si l'intensité de la force attractive du tube est égale à celle du liquide, et alors dans un tube cylindrique très-étroit, la surface du liquide est à très-peu près celle d'une demi-sphère : l'angle devient droit et la surface liquide devient plane, si la première des intensités n'est que la moitié de la seconde : enfin, cet angle est égal à deux droits, et la surface liquide est celle d'une demi-sphère convexe, si la force attractive du tube est insensible par rapport à celle du liquide. La mesure de cet angle donnera donc celle du rapport de ces forces, pourvu que la première ne surpasse pas la seconde.

Dans le cas où la force attractive du tube sur le liquide, surpasse celle du liquide sur lui-même; une lame très-mince du liquide adhère aux parois du tube, et forme un tube intérieur qui seul élève alors le liquide dont la surface devient par conséquent concave et celle d'une demi-sphère. Ce cas est celui de l'eau, des alcohols et des builes, dans un tube de verre.

Vers l'extrémité des parois du tube, et dans l'étendue de sa sphère d'activité sensible, l'attraction de sa partie supérieure n'étant plus la même, et diminuant sans cesse, à mesure que le liquide approche de cette extrémité; l'angle que nous venons de considérer, reçoit de grandes variations. Ainsi, en enfonçant de plus en plus, un tube capillaire de verre, dans l'alcohol; l'élévation du liquide intérieur au-dessus du niveau, reste toujours la même, jusqu'à ce qu'il parvienne à l'extrémité du tube. Alors, en continuant de plonger le tube, on voit la surface de l'alcohol devenir de moins en moins concave, et finir par être plane, lorsque l'extrémité supérieure du tube arrive à la surface de niveau du liquide.

Un phénomène semblable a lieu, quand on verse successivement de l'alcohol dans un tube de verre, capillaire, ouvert par ses deux extrémités, et maintenu dans une situation verticale. Le liquide descend à l'extrémité inférieure du tube : la surface supérieure de la colonne, est toujours concave et celle d'une demi-sphère : la surface inférieure est paroillement concave; mais elle le devient de moins en moins, à mesure qu'en versant de l'alcohol, la longueur de la colonne augmente; et lorsque cette longueur égale la hauteur due à la capillarité, c'est-à-dire la hauteur à laquelle le liquide s'éleverait au-dessus du niveau, dans le tube, s'il plongeait par son extrémité inférieure dans un vase indéfini plein de ce liquide; la surface inférieure de la colonne, devient plane. En continuant de verser de l'alcohol, cette surface devient de plus en plus convexe, si l'adhérence de l'air à la base du tube, ou toute autre cause, empêche cette base d'être mouillée par le liquide. Quand cette surface est devenue celle d'une demi-sphère convexe; la longueur de la colonne est double de la hauteur due à la capillarité. En effet, la succion que produit la concavité de sa surface supérieure, et la pression que produit la convexité de sa surface inférieure, concourent à soutenir cette colonne : ces deux forces sont égales, par ce qui précède, et la première suffit pour maintenir le liquide à la hauteur due à la capillarité. Si l'on continue de verser de l'alcohol, la goutte liquide s'alonge, et crève dans les points de sa surface où le rayon de courbure augmente par cet alongement. La goutte se répand alors sur la base inférieure du tube, où elle forme une nouvelle goutte qui devient de plus en plus convexe, jusqu'à ce qu'elle forme une demi-sphère dont le rayon est le rayon extérieur du tube. Alors si la colonne qui au moment où la première goutte s'est répandue sur la base du tube, a diminué de longueur, est en équilibre; sa longueur est la somme des élévations du liquide, qui auraient lieu dans deux tubes de verre,

plongés dans ce liquide, et dont les rayons intérieurs seraient, l'un, celui du premier tube, et l'autre, le rayon extérieur du même tube. Tous ces résultats de la théorie, ont été confirmés par l'expérience.

Considérons maintenant un vase indéfini rempli d'un nombre quelconque de fluides placés horizontalement les uns au-dessus des autres. « Si l'on plonge verticalement, l'extrémité inférieure » d'un tube prismatique droit; l'excès du poids des fluides contenus » dans le tube, sur le poids des fluides qu'il eût renfermés sans » l'action capillaire, est le même que le poids du fluide qui s'éleverait » au-dessus du niveau, si le fluide dans lequel plonge l'extrémité » inférieure du tube, existait seul. » En effet, l'action du prisme et de ce fluide, sur le même fluide renfermé dans le tube, est évidemment la même que dans ce dernier cas. Les autres fluides contenus dans le prisme, étant élevés sensiblement au-dessus de sa base inférieure, l'action du prisme sur chacun d'eux ne peut ni les élever ni les abaisser. Quant à l'action réciproque de ces fluides les uns sur les autres, elle se détruirait évidemment, s'ils formaient ensemble une masse solide; ce que l'on peut supposer sans troubler l'équilibre.

Il suit de là, que si l'on plonge par son extrémité inférieure, un tube prismatique dans un fluide, et qu'ensuite on verse dans ce tube, un autre fluide qui reste au-dessus du premier; le poids des deux fluides contenus dans le tube, sera le même que celui. du fluide qu'il renfermait auparayant. La surface du fluide supérieur sera celle qu'il prendrait dans le tube plongeant par son extrémité inférieure dans ce fluide. Au point de contact des deux fluides, ils auront une surface commune différente de celle qu'ils auraient séparément, et que l'on peut déterminer par l'analyse. Si l'on humecte d'eau, d'alcohol, ou de tout autre liquide qui mouille exactement le verre, l'intérieur d'un tube capillaire cylindrique de cette substance, et que l'on plonge dans le mercure, l'extrémité inférieure de ce tube; on voit une partie du liquide qui humectait les parois du tube, se réunir en colonne au-dessus du mercure. Il résulte de l'analyse appliquée à cet objet, que la surface commune du mercure, et du liquide, est celle d'une demi-sphère convexe relativement au mercure, ensorte qu'alors l'angle que forme sa surface avec les parois du tube, est nul.

Un vase indéfini, étant supposé ne renfermer que deux fluides, concevons que l'on y plonge entièrement un prisme droit vertical, de manière qu'il soit dans l'un, par sa partie supérieure, et dans l'autre, par sa partie inférieure: le poids du fluide inférieur élevé dans le prisme par l'action capillaire, au-dessus de son niveau dans le vase, sera égal au poids d'un pareil volume du fluide supérieur, plus au poids du fluide inférieur qui s'éleverait dans le prisme au-dessus du niveau, s'il n'y avait que ce fluide dans le vase, moins au poids du fluide supérieur qui s'éleverait dans le même prisme au-dessus du niveau, si ce fluide existant seul dans le vase, le prisme trempait dans ce fluide par son extrémité » inférieure. »

Pour le démontrer, on observera que l'action du prisme et du fluide inférieur sur la partie du fluide inférieur qu'il contient, est la même que si ce fluide existait seul dans le vase; ce fluide est donc dans ces deux cas, sollicité verticalement vers le haut, de la même manière, et il est évident que les forces qui le sollicitent dans le dernier cas, équivalent au poids du volume de ce fluide. qui s'éleverait au-dessus du niveau: pareillement, le fluide supérieur contenu dans la partie supérieure du prisme, est sollicité verticalement vers le bas, par l'action du prisme et de ce fluide, comme il serait sollicité vers le haut, si le vase ne renfermant que ce fluide, le prisme y trempait par son extrémité inférieure; et dans ce cas, la réunion des actions du prisme et du fluide équivaut au poids de ce fluide qui s'éleverait dans le prisme au-dessus du niveau. Enfin, la colonne des fluides intérieurs au prisme, est sollicitée verticalement vers le bas, par son propre poids, et vers le haut, par la pression des fluides extérieurs. En réunissant toutes ces forces qui doivent se faire équilibre, on a le théorème que nous venons d'énoncer. On déterminera par les mêmes principes, ce qui doit avoir lieu, lorsque le vase est rempli d'un nombre quelconque de fluides.

L'élévation et la dépression des fluides dans les tubes capillaires, varie avec la température, par les changemens que la chaleur produit dans le diamètre des tubes, et principalement dans la densité des fluides. Relativement aux fluides qui tels que l'alcohol, jouissent d'une parfaite liquidité, on a ce théorème général : « L'élévation d'un fluide qui mouille exactement les parois d'un » tube capillaire, est, à diverses températures, en raison directe » de la densité du fluide, et en raison inverse du diamètre intérieur » du tube. »

En appliquant la théorie précédente, à la dépression du mercure dans les baromètres; on peut former une table des dépressions correspondantes aux divers diamètres de leurs tubes, et par ce moyen, rendre comparables entre eux, ces instrumens si précieux à l'Astronomie, à la Physique et à la Géodésie.

L'un des plus grands avantages des théories mathématiques, et le plus propre à établir leur certitude, consiste à lier ensemble des phénomènes qui semblent disparates, en déterminant leurs rapports mutuels, non par des considérations vagues et conjecturales, mais par de rigoureux calculs. Ainsi la loi de la pesanteur universelle rattache le flux et le reflux de la mer, aux lois du mouvement elliptique des planètes. C'est encore ainsi, que la théorie précédente fait dépendre l'adhésion des disques à la surface des liquides, ainsi que l'attraction et la répulsion des petits corps qui nagent sur cette surface, de l'ascension des mêmes liquides, dans les tubes capillaires.

Si l'on applique à la surface d'un liquide, un disque suspendu au fléau d'une balance très-exacte, de manière qu'il soit enlevé verticalement au moyen de très-petits poids ajoutés successivement et avec lenteur, dans le plateau de l'autre fléau de la balance; on voit le disque s'élever peu à peu au-dessus de la surface de niveau, en soulevant une colonne de liquide. Par des additions de poids, successives, le disque finit par se détacher de la colonne qui retombe alors sur la surface du liquide. Le poids nécessaire pour cette séparation, peut se conclure de l'élévation du liquide dans un tube capillaire cylindrique de la matière du disque. Concevons que ce disque soit circulaire et d'un grand diamètre. La colonne qu'il soulève, prend alors la forme d'un solide de révolution dont la base inférieure s'étend indéfiniment sur la surface de la

masse du liquide, et dont la base supérieure est la surface inférieure du disque. La théorie de l'action capillaire donne l'équation différentielle de la surface de la colonne : cette surface est concave, et c'est en vertu de sa concavité, que la colonne se maintient suspendue en équilibre; car si par un point quelconque de la surface de la colonne, on imagine un canal infiniment étroit, d'abord horizontal, se recourbant ensuite verticalement vers le bas, et se prolongeant jusqu'au-dessous de la surface de niveau du liquide; il est visible que le liquide contenu dans la branche verticale de ce canal, sera soutenu par la succion due à la concavité de la surface de la colonne; ainsi que l'eau élevée dans un tube capillaire de verre, se maintient en équilibre, par une cause semblable. On trouve par l'analyse, que le poids de la colonne soulevée, auquel la somme des poids mis dans le plateau opposé de la balance pour la soutenir, doit être égale, est le même que le poids d'une colonne cylindrique liquide, qui aurait 1° pour hauteur, la racine carrée du produit de l'élévation moyenne du liquide dans un tube cylindrique de la matière du disque, par le diamètre du tube, divisé par le cosinus de l'angle que la surface inférieure de ses parois forme avec un plan tangent de la surface liquide, à l'extrémité de la sphère d'activité sensible du tube, angle que nous nommerons angle limite; 2º pour base, la surface inférieure du disque, multipliée par le cosinus de la moitié de l'angle que cette surface forme avec un plan qui touche la surface de la colonne, à l'extrémité de la sphère d'activité sensible du disque. Ce dernier angle d'abord égal à deux droits, diminue à mesure que par l'addition successive des poids, on soulève le disque; à peu près comme il augmente dans un tube capillaire que l'on continue de plonger dans un liquide déjà parvenu à son extrémité supérieure. Si l'on ilivise par la surface inférience du disque, le cylindre dont nous venons de parler; on aura l'élévation du disque au-dessus du niveau du liquide; cette élévation observée fera donc connaître l'angle correspondant formé par les surfaces du disque et du liquide. Lorsque le disque est sur le point de se détacher de la colonne; cet angle devient égal à l'angle limite. Si le liquide mouille le disque, l'angle limite est nul, et la surface de la colonne, au moment de sa séparation, est celle d'une gorge de poulie dont la partie la plus étroite est aux sept dixièmes environ, de la hauteur de la colonne. Gay-Lussac a fait sur l'adhésion des disques à la surface d'un grand nombre de liquides, des expériences trèsexactes qui, comparées à la théorie précédente, et s'accordant avec elle d'une manière très-remarquable, ne laissent aucun doute sur la vérité de cette théorie.

Ces expériences peuvent servir à déterminer les rapports des forces attractives de diverses substances sur un même liquide. En formant avec ces substances, des disques circulaires fort larges et d'un même diamètre, et en les appliquant à la surface d'une masse indéfinie de ce liquide; on trouve par l'analyse, que les intensités respectives de ces attractions à égalité de volume, sont proportionnelles aux carrés des poids nécessaires pour détacher les disques, du liquide. Quand la force attractive du disque sur le liquide, surpasse celle du liquide sur lui-même, l'expérience ne fait connaître que cette dernière force; car alors, une lame liquide adhère fortement à la surface inférieure du disque, et forme un nouveau disque qui seul élève le liquide. Par cette raison tous les disques de même figure et de même grandeur, formés de diverses substances que l'eau mouille, telles que le verre, le marbre et les métaux, adhèrent également à la surface de ce liquide. Mais dans le cas ou l'attraction du disque est plus petite, le frottement de ce liquide contre les disques et sa viscosité, apportent de grandes différences dans les résultats des expériences sur leur adhésion à sa surface : c'est ce que Gay-Lussac a éprouvé dans celles qu'il a faites sur l'adhésion d'un disque de verre au mercure. Le maximum de cette adhésion est, par ce qui précède, à fort peu près proportionnel au sinus de la moitié de l'angle aigu que forme avec la surface supérieure des parois d'un tube de verre qui plonge verticalement dans ce liquide, un plan tangent à la surface de ce liquide, à l'extrémité de la sphère d'activité sensible du tube; or on sait par l'observation journalière du baromètre, que cet angle peut augmenter considérablement, lorsque le mercure descend avec une grande lenteur; le frottement du mercure contre les parois du tube et sa viscosité, empêchant la descente des parties de ce liquide, contiguës à ces

parois. Les mêmes causes empêchent la colonne de mercure, de se séparer du disque. Cette séparation n'a point lieu directement entre les deux surfaces du disque et du liquide, comme si le mercure formait une masse solide : il faudrait alors employer une force incomparablement plus grande que celle qui la produit. Mais en soulevant le disque, la colonne liquide commence à se détacher de ses bords; ensuite elle se rétrécit de plus en plus vers le milieu du disque, jusqu'au moment où elle le quitte. Le frottement du mercure contre la surface inférieure du disque, et sa viscosité doivent donc empêcher cet effet, et augmenter, comme dans la descente du baromètre, l'angle aigu du contact de la surface du disque avec celle du mercure; et si par l'extrême lenteur avec laquelle on ajoute les petits poids dans le plateau de la balance. toutes les molécules de la colonne liquide ont le temps de s'accommoder au nouvel état d'équilibre qui convient à cet angle; on conçoit que l'on peut considérablement accroître le poids nécessaire. pour détacher le disque, de la surface du mercure.

L'attraction et la répulsion des petits corps qui nagent à la surface des liquides, sont encore des phénomènes capillaires que l'on peut soumettre à l'analyse. Imaginons deux plans parallèles formés de la même matière, et plongeant verticalement par leurs extrémités inférieures dans un liquide indéfini : supposons d'abord que ce liquide s'abaisse entre eux; il est visible que cet abaissement à l'intérieur des plans sera plus considérable qu'à leur extérieur, et qu'il le sera d'autant plus, que ces plans seront plus rapprochés. En vertu de cette différence, les plans seront évidemment pressés l'un vers l'autre, par le liquide extérieur. Le même effet a lieu, si le liquide s'élève entre les plans. Pour le faire voir, concevons dans le liquide intérieur, un canal infiniment étroit et vertical, qui passe par le point le plus bas de sa surface; et supposons que ce canal se recourbe horizontalement, pour aboutir à un point de la surface intérieure de l'un des plans, plus élevé que le liquide extérieur. Ce point éprouvera d'abord la pression de l'atmosphère; ensuite, celle du liquide contenu dans la branche verticale du canal. Mais ces pressions sont diminuées par l'action du ménisque liquide que retrancherait un plan tangent au point le plus bas de la surface

du liquide à l'intérieur; et cette action fait équilibre au poids de la colonne entière du liquide contenu dans la branche verticale du canal, en la supposant prolongée jusqu'à la surface de niveau du liquide indéfini; le point intérieur du plan, éprouvera donc une pression moindre que celle de l'atmosphère qui presse le point correspondant à l'extérieur; cette différence de pression tend donc encore à rapprocher les deux plans. L'analyse conduit à ce théorème: C Soit que le liquide s'élève ou s'abaisse entre les plans; la pression D que chaque plan éprouve vers l'autre, est égale au poids d'un » prisme liquide, dont la hauteur est la demi-différence des élévations n des points extrêmes de contact du liquide à l'intérieur et à p l'extérieur du plan, et dont la base est la partie du plan, comprise p entre les lignes horizontales menées par ces points. » Il en résulte que lorsque les plans sont très-rapprochés, leur tendance à se réunir, croît en raison inverse du carré de leur distance mutuelle. Ainsi au moyen d'un liquide intermédiaire, des forces dont l'action n'est sensible qu'à des distances imperceptibles, produisent une force qui s'étend à des distances sensibles, suivant la loi de la pesanteur universelle.

. Si les deux plans sont de matières différentes et telles que le liquide s'abaisse à l'extérieur de l'un d'eux, autant qu'il s'élève à l'extérieur de l'autre ; ils se repousseront mutuellement. La surface du liquide à leur intérieur, aura une ligne d'inflexion, horizontale et de niveau avec la surface du liquide extérieur. Au-dedans, le liquide sera moins élevé près du plan qui l'élève, qu'au-dehors ; et l'on vient de voir que la pression est alors plus grande du côté où le liquide est moins élevé. Pareillement, le liquide étant plus abaissé an-dehors du plan qui l'abaisse, qu'à son intérieur, la pression intérieure est plus grande; les deux plans tendent donc à s'écarter l'un de l'autre, et cette tendance a lieu, quel que soit leur rapprochement. Il n'en est pas de même, lorsqu'il y a une différence entre l'élévation du liquide à l'extérieur de l'un des plans, et son abaissement à l'extérieur de l'autre. L'analyse fait voir qu'ils commencent par se repousser, et qu'en continuant de les rapprocher, cette répulsion apparente finit par se changer dans une attraction toujours croissante à mesure qu'on les rapproche,

le liquide s'élevant ou s'abaissant indéfiniment à leur intérieur. Dans tous les cas, soit que les plans se repoussent, soit qu'ils s'attirent; quoiqu'ils n'agissent l'un sur l'autre, que par l'action capillaire, l'action est toujours égale à la réaction. L'expérience a confirmé ces divers résultats de la théorie.

Enfin, la suspension des corps à la surface d'un liquide spécifiquement moins pesant qu'eux, est un phénomène capillaire que
l'on peut soumettre à l'analyse. Il n'a lieu que dans le cas où ces
corps par leur action capillaire, écartent le liquide; et alors on
conçoit qu'ils doivent, pour être en équilibre, suppléer par leur
poids, celui du liquide écarté. En général, l'augmentation du poids
d'un corps de figure quelconque, due à l'action capillaire, est égale
au poids du volume de liquide qu'il élève au-dessus du niveau par
l'action capillaire; et si le liquide est déprimé au-dessous, l'augmentation de poids se change en diminution, et le poids du corps
en équilibre, est alors égal au poids d'un volume de liquide, pareil
à celui que le corps déplace, soit par l'espace qu'il occupe au-dessous
du niveau, soit par l'espace qu'il laisse vide, en écartant le liquide
par l'action capillaire.

Ce principe embrasse le principe commu d'hydrostatique sur la diminution du poids d'un corps plongeant dans un liquide: il suffit d'en supprimer ce qui est relatif à l'action capillaire qui disparaît totalement, quand le corps est entièrement plongé dans le liquide, au-dessous du niveau. Pour le démontrer, imaginons un canal vertical assez large pour embrasser le corps et tout le volume sensible de liquide, qu'il soulève ou qu'il laisse vide, par l'action capillaire: supposons que ce canal, après avoir pénétré dans le liquide, devienne horizontal, et qu'ensuite il se relève verticalement jusqu'à la surface du liquide, en conservant toujours la même largeur. Il est clair que dans l'état d'équilibre, les poids contenus dans les deux branches verticales de ce canal, doivent être égaux; il faut donc que le corps, par sa légéreté spécifique, compense le poids du liquide élevé par l'action capillaire, ou si cette action le déprime, il faut que par sa pesanteur spécifique, il compense le

vide que cette action produit. Dans le premier cas, l'action capillaire tend à faire plonger le corps dans le liquide : dans le second cas,

cette action soulève le corps qui peut être par là, maintenu à la surface du liquide, quoique spécifiquement plus pesant.

C'est ainsi qu'un cylindre d'acier très-délié, dont le contact avec l'eau, est empêché par un vernis, ou par une couche d'air qui l'enveloppe, se soutient à la surface de ce liquide. Si l'on place ainsi horizontalement sur l'eau, deux cylindres égaux et parallèles qui se touchent de manière qu'ils se dépassent mutuellement; on observe qu'à l'instant, ils glissent l'un contre l'autre, pour se mettre de niveau par leurs extrémités. Le liquide étant plus déprimé aux extrémités qui sont en contact avec les cylindres, qu'aux extrémités opposées; les bases de ces dernières extrémités sont plus pressées que les deux autres bases : chaque cylindre tend, en conséquence, à se réunir de plus en plus avec l'autre; et comme les forces accélératrices portent toujours un système de corps, dérangé de l'état d'équilibre, au-delà de cette situation ; les deux cylindres doivent se dépasser alternativement, en faisant des oscillations qui diminuant sans cesse, par les résistances qu'elles éprouvent, finissent par être anéanties : ces cylindres alors parvenus à l'état de repos, sont de niveau par leurs extrémités.

Les phénomènes que présente une goutte liquide en mouvement ou suspendue en équilibre, soit dans un tube capillaire conique, soit entre deux plans très-peu inclinés l'un à l'autre, et dont l'intersection est horizontale, sont très-propres à vérifier la théorie. Une petite colonne d'eau ou d'alcohol dans un tube conique de verre, ouvert à ses deux extrémités, et maintenu horizontalement, se porte vers le sommet du tube; et l'on voit que cela doit être. En effet, la surface de la colonne liquide est concave à ses deux extrémités; mais le rayon de cette surface est plus petit du côté du sommet que du côté de la base; l'action du liquide sur lui-même est donc moindre du côté du sommet, et par conséquent, la colonne doit tendre vers ce côté. Si le liquide est du mercure; alors sa surface est convexe, et son rayon est moindre encore vers le sommet que vers la base; mais à raison de sa convexité, l'action du liquide sur lui-même est plus grande vers le sommet, et la colonne doit se porter vers la base du tube; ce qui est conforme à l'expérience.

On peut balancer ces actions du liquide sur lui-même, par le propre poids de la colonne, et la tenir suspendue en équilibre, en inclinant l'axe du tube, à l'horizon. Un calcul fort simple fait voir que si la longueur de la colonne est peu considérable, et si le tube est fort étroit, le sinus de l'inclinaison de l'axe à l'horizon, dans le cas de l'équilibre, est à fort peu près en raison inverse du carré de la distance du milieu de la colonne au sommet du cône; et qu'il est égal à une fraction dont le dénominateur est cette distance, et dont le numérateur est la hauteur à laquelle le liquide s'éleverait dans un tube cylindrique dont le diamètre serait celui du cône, au milieu de la colonne. Des résultats semblables ont lieu pour une goutte liquide placée entre deux plans qui se touchent par leurs bords supposés horizontaux, en formant entre eux, un angle égal à l'angle formé par l'axe du cône, et ses côtés; l'inclinaison à l'horizon, du plan qui divise également l'angle formé par les plans, doit être la même que celle de l'axe du cône, pour que la goutte reste en équilibre. Les expériences que l'on a faites sur cet objet, confirment ces résultats de la théorie.

La figure des liquides compris entre des plans qui font entre eux des angles quelconques; celles des gouttes liquides s'appuyant sur un plan; l'écoulement des liquides par des syphons capillaires, et beaucoup d'autres phénomènes semblables, ont été soumis comme les précédens, à l'analyse. L'accord de ses résultats avec l'expérience, prouve d'une manière incontestable, l'existence dans tous les corps, d'une attraction moléculaire décroissante avec une extrême rapidité, et qui modifiée dans les liquides, par la figure des espaces étroits qui les renferment, produit tous les phénomènes de la capillarité.

Ces phénomènes étant ramenés à une théorie mathématique, il était nécessaire pour la comparer exactement avec la nature, d'avoir sur cet objet, une suite d'expériences très-précises. Le besoin de semblables expériences se fait sentir à mesure que la physique, en se perfectionnant, rentre dans le domaine de l'analyse. On peut alors, par leur comparaison avec les théories, élever celle-ci, au plus haut degré de certitude dont les sciences physiques soient susceptibles. Les expériences que Gay-Lussac a bien voulu faire à ma prière, sur les effets de la capillarité, et auxquelles il a su

donner toute l'exactitude des observations astronomiques, ont procuré cet avantage, à la théorie que nous venons d'exposer.

Ouand on est parvenu à la véritable cause des phénomènes, il est curieux de porter la vue en arrière, et de considérer jusqu'à quel point les hypothèses imaginées pour les expliquer, s'en rapprochent. Newton s'est beaucoup étendu sur les phénomènes capillaires dans les questions qui terminent son Optique; il a très-bien yu qu'ils dépendent de forces attractives décroissantes avec une extrême rapidité, par la distance; et ce qu'il dit sur les affinités chimiques qu'elles produisent, est très-remarquable pour son temps, et a été confirmé en grande partie, par les trayaux des chimistes modernes; mais ce grand Géomètre n'a point donné de méthode pour soumettre au calcul, les effets capillaires de ces forces. Jurin a depuis essayé de ramener à un principe général, l'ascension des liquides dans des tubes très-étroits. Il attribue celle de l'eau dans un tube de verre, à l'attraction de la partie annulaire du tube à laquelle l'eau est contiguë; a car, dit-il, c'est seulement de cette » partie du tube, que l'eau doit s'éloigner en s'abaissant; elle est » par conséquent la seule qui, par la force de son attraction, » s'oppose à sa descente. Cette cause est proportionnelle à son effet, » puisque cette circonférence et la colonne d'eau suspendue sont » toutes deux proportionnelles au diamètre du tube. » Mais on ne doit employer le principe de la proportionnalité des effets aux causes, que lorsqu'elles sont premières, et non quand elles sont des résultats de causes premières. Ainsi en admettant même que le seul anneau de verre, adhérent à la surface de l'eau, est la cause de l'élévation de ce liquide, on ne doit pas en conclure que le poids élevé doit être proportionnel à son diamètre; parce qu'on ne peut connaître la force de cet anneau, qu'en sommant celle de toutes ses parties. Clairaut qui a examiné cet objet, dans sa Théorie de la figure de la Terre, substitue à l'hypothèse de Jurin, une analyse exacte de toutes les forces qui tiennent une colonne d'eau suspendue en équilibre, dans un canal infiniment étroit passant par l'axe du tube. Mais il n'a pas expliqué le principal phénomène capillaire, celui de l'ascension et de la dépression des liquides, en raison inverse du diamètre intérieur des tubes très-étroits : il se contente d'observer,

sans en donner la preuve, qu'une infinité de lois d'attraction peuvent produire ce phénomène. La supposition qu'il fait de l'action du verre, sensible jusque sur les molécules de l'eau, situées dans l'axe du tube, devait l'éloigner de la véritable explication du phénomène : mais il est remarquable que s'il fût parti de l'hypothèse d'une attraction insensible à des distances sensibles, et s'il eût appliqué aux molécules situées dans la sphère d'activité des parties du tube, l'analyse des forces, dont il a fait usage pour les molécules de l'axe : il aurait été conduit, non-seulement au résultat de Jurin, mais encore à ceux que nous avons obtenus par la seconde manière dont nous avons envisagé les phénomènes capillaires. On voit par cette méthode, que si le liquide mouille parsaitement le tube, on peut concevoir que la partie du tube, supérieure à la surface du liquide, d'une quantité imperceptible, le sollicite à s'élever, et le tient suspendu en équilibre, lorsque le poids de la colonne élevée, balance l'attraction de cet anneau du tube. Ce n'est pas, comme Jurin le prétend, l'anneau même en contact avec le liquide, qui produit ces effets, puisque son action est horizontale: ces phénomènes prouvent que l'action réciproque du tube et du liquide ne s'arrête point aux surfaces. Mais le principe de Jurin, quoique inexact, l'a conduit à une conséquence vraie, savoir, que le poids de la colonne liquide est proportionnel au contour de la base intérieure du tube; conséquence que l'on doit étendre généralement à un tube prismatique, quels que soient sa forme intérieure et le rapport de l'attraction de ses molécules sur le liquide, à l'attraction des molécules liquides sur elles-mêmes.

La ressemblance de la surface des fluides contenus dans les espaces capillaires, et des gouttes liquides, avec les surfaces dont les Géomètres s'occupèrent à l'origine du calcul infinitésimal, sous les noms de lintéaire, d'élastique, porta naturellement plusieurs Physiciens à considérer les liquides, comme étant enveloppés de semblables surfaces qui par leur tension et leur élasticité, donnaient aux liquides, les formes indiquées par l'expérience. Segner, l'un des premiers qui aient eu cette idée, sentit bien qu'elle n'était qu'une fiction propre à représenter les phénomènes, mais que l'on ne devait admettre qu'autant qu'elle se rattachait à la loi

d'une attraction insensible à des distances sensibles. Il essaya donc d'établir cette dépendance; mais en suivant ses raisonnemens, il est facile d'en reconnaître l'inexactitude; et les résultats auxquels il parvint, et qui ne s'accordent ni avec l'analyse, ni avec la nature, en sont la preuve. Au reste, on voit par la note qui termine ses recherches, qu'il n'en a pas été content lui-même. Mais on doit lui rendre cette justice, qu'il était sur la voie qui devait conduire à la théorie générale des phénomènes capillaires. Lorsque je m'en occupais, Thomas Young en faisait pareillement le sujet de recherches fort ingénieuses, insérées dans les Transactions philosophiques. Il y compare avec Segner, la force capillaire, à la tension d'une surface liquide, en ayant égard à sa courbure dans deux directions perpendiculaires entre elles; et de plus il suppose que cette surface coupe toujours les parois des espaces capillaires, sous un angle déterminé pour les mêmes substances, quelle que soit d'ailleurs la surface de ces parois; ce qui n'est exact qu'aux limites de la sphère d'activité sensible de ces substances, et cesse même de l'être au-delà de ces limites, lorsque le liquide est à l'extrémité des parois, comme on l'a vu relativement aux surfaces des tubes et des disques qui le soulèvent. Mais Young n'a pas, ainsi que Segner, tenté de dériver ses hypothèses, de l'attraction moléculaire; ce qui était indispensable pour les réaliser : elles ne pouvaient l'être que par une démonstration pareille à celle que j'ai donnée dans ma première méthode, à laquelle les explications de Segner et d'Young se rattachent, comme celle de Jurin se rattache à la seconde manière dont j'ai considéré ce genre de phénomènes.

Je me suis beaucoup étendu sur les phénomènes capillaires, parce qu'indépendamment de l'intérêt qu'ils offrent par eux-mêmes, leur théorie répand un grand jour sur les attractions réciproques des molécules des corps, dont ils sont de très-légères modifications. Le calcul nous montre en effet, que l'action capillaire dérive de la force attractive, et qu'elle est à celle-ci, dans un rapport beaucoup moindre que celui du rayon de la sphère d'activité sensible de cette force, au rayon de courbure de la surface capillaire. Ainsi en supposant ce dernier rapport égal à un dix-millième; la force attractive de l'eau sur elle-même surpassera vingt mille fois l'action capillaire

de ce liquide dans un tube de verre, large d'un millimètre, action équivalente, suivant l'expérience, à une colonne d'eau de trente millimètres; cette force surpassera donc la pression d'une colonne d'eau de six cents mètres. Une pression aussi considérable comprime fortement les couches intérieures de ce liquide, et accroît leur densité qui par cette raison, doit surpasser celle d'une lame d'eau isolée, d'une épaisseur plus petite que la sphère d'activité sensible de ses molécules. Est-il invraisemblable de supposer que ce cas est celui de l'enveloppe aqueuse des vapeurs vésiculaires qui par là deviennent beaucoup plus légères?

L'attraction moléculaire est la cause de l'agrégation des molécules homogènes et de la solidité des corps. Elle est la source des affinités des molécules hétérogènes. Semblable à la pesanteur, elle ne s'arrête point à la superficie des corps; mais elle les pénètre, en agissant au-delà du contact à des distances imperceptibles : c'est ce que les phénomènes capillaires montrent avec évidence. De là dépend l'influence des masses dans les affinités chimiques, ou cette capacité de saturation, dont Berthollet a si heureusement développé les effets. Ainsi deux acides, en agissant sur une même base, se la partagent en raison de leurs affinités avec elle; ce qui n'aurait point lieu, si l'affinité n'agissait qu'au contact; car alors l'acide le plus puissant retiendrait la base entière. La figure des molécules, l'électricité, la chaleur, la lumière, et d'autres causes, en se combinant avec cette loi générale, modifient ses effets. Des expériences de Gay-Lussac sur les phénomènes capillaires des mélanges formés de proportions diverses d'eau et d'alcohol, semblent indiquer ces modifications; car ces phénomènes ne suivent point exactement les lois qui résultent des attractions respectives des deux fluides mêlés ensemble, et des pesanteurs spécifiques.

Ici se présente une question intéressante. La loi de l'attraction moléculaire, relative aux distances, est-elle la même pour tous les corps? Cela semble résulter du phénomène général observé par Rither, et qui consiste en ce que les rapports des bases qui saturent un acide, sont les mêmes pour tous les acides : dans ce cas, la loi de la capillarité est aussi la même pour tous les liquides.

Les molécules d'un corps solide, ont la position dans laquelle

leur résistance à un changement d'état est la plus grande. Chaque molécule, lorsqu'elle est infiniment peu dérangée de cette position. tend à y revenir en vertu des forces qui la sollicitent. C'est là ce qui constitue l'élasticité dont on peut supposer tous les corps doués. lorsqu'on ne change qu'extrêmement peu leur figure. Mais quand l'état respectif des molécules éprouve un changement considérable, ces molécules retrouvent de nouveaux états d'équilibre stable; comme il arrive aux métaux écrouis, et généralement aux corps qui par leur mollesse, sont susceptibles de conserver toutes les formes qu'on leur donne en les pressant. La dureté des corps et leur viscosité ne me paraissent être que la résistance des molécules, à ces changemens d'état d'équilibre. La force expansive de la chaleur étant opposée à la force attractive des molécules, elle dimipue de plus en plus leur viscosité ou leur adhérence mutuelle, par ses accroissemens successifs; et lorsque les molécules d'un corps n'opposent plus qu'une très-légère résistance à leurs déplacemens respectifs dans son intérieur et à sa surface, il devient liquide. Mais sa viscosité, quoique très-affaiblie, subsiste encore, jusqu'à ce que, par une augmentation de température, elle dévienne nulle ou insensible. Alors, chaque molécule retrouvant dans toutes ses positions, les mêmes forces attractives, et la même force répulsive de la chaleur; elle cède à la pression la plus légère, et le liquide jouit d'une fluidité parfaite. On peut conjecturer avec vraisemblance, que cela a lieu pour les liquides qui, comme l'alcohol, ont une température fort supérioure à celle où ils commencent à se congeler. C'est dans ces liquides, que les lois des phénomènes capillaires, comme celles de l'équilibre et du mouvement des fluides, s'observent avec exactitude; car les forces dont les phénomènes capillaires dépendent, sont si petites, que le plus léger obstacle, tel que la viscosité des liquides et leur frottement contre les parois qui les renferment, suffit pour en modifier sensiblement les effets. L'influence de la figure des molécules est très-remarquable dans les phénomènes de la congélation et de la cristallisation que l'on rend beaucoup plus promptes, en plongeant dens le liquide, un morceau de glace ou de cristal formé du même liquide : les molécules de la surface de ce solide, se présentant aux molécules

liquides qui les touchent, dans la situation la plus favorable à leur union avec elles. On conçoit que l'influence de la figure, quand la distance augmente, doit décroître bien plus rapidement que l'attraction elle-même. C'est ainsi que dans les phénomènes célestes qui dépendent de la figure des planètes, tels que le flux et le reflux de la mer, et la précession des équinoxes, cette influence décroît en raison du cube de la distance, tandis que l'attraction ne diminue qu'en raison du carré de la distance.

Il paraît donc que l'état solide dépend de l'attraction des molécules, combinée avec leur figure; ensorte qu'un acide, quoiqu'exerçant sur une base, une moindre attraction à distance, que sur une autre base, se combine et cristallise de préférence avec elle, si par la forme de ses molécules, son contact avec cette base, est plus intime. L'influence de la figure, sensible encore dans les fluides visqueux, est nulle dans ceux qui jouissent d'une entière fluidité. Enfin, tout porte à croire que dans l'état gazeux, non-seulement l'influence de la figure des molécules, mais encore celle de leurs forces attractives est insensible par rapport à la force répulsive de la chaleur. Ces molécules ne paraissent être alors qu'un obstacle à l'expansion de cette force; car on peut dans un grand nombre de cas, sans changer la tension d'un gaz renfermé dans un espace donné, substituer à plusieurs de ses parties, des parties d'un autre gaz, égales en volume. C'est la raison pour laquelle divers gaz mis en contact, finissent à la longue, par se mêler d'une manière uniforme ; car ce n'est qu'alors, qu'ils sont dans un état stable d'équilibre. Si l'un de ces gaz est de la vapeur; l'équilibre n'est stable que dans le cas où cette vapeur disséminée est'en quantité égale ou moindre que celle de la même vapeur qui se répandrait à la même température, dans un espace vide égal à celui qu'occupe le mélange. Si la vapeur est en plus grande quantité ; l'excédant doit pour la stabilité de l'équilibre, se condenser sous forme liquide.

La considération de la stabilité de l'équilibre d'un système de molécules réagissantes les unes sur les autres par leurs forces attractives, est très-utile pour l'explication d'un grand nombre de phénomènes. De même que dans un système de corps solides et fluides animés par la pesanteur, la mécanique nous montre plusieurs

états d'équilibre stable; la chimie nous offre dans la combinaison des mêmes principes, divers états permanens. Quelquefois, deux premiers principes s'unissent ensemble, et les molécules formées de leur union, s'unissent à celles d'un troisième principe : telle est, selon toute apparence, la combinaison des principes constituans d'un acide avec une base. D'autres fois, les principes d'une substance, sans être unis ensemble, comme ils le sont dans la substance même. s'unissent à d'autres principes, et forment avec eux, des combinaisons triples ou quadruples; ensorte que cette substance retirée par l'analyse chimique, est alors un produit de cette opération. Les mêmes molécules peuvent encore s'unir par diverses faces. et produire ainsi des cristaux différens par la forme, la dureté. la pesanteur spécifique et leur action sur la lumière. Enfin, la condition d'un équilibre stable me paraît être ce qui détermine les rapports fixes suivant lesquels divers principes se combinent dans un grand nombre de circonstances, rapports qui, d'après l'expérience, paraissent être souvent les plus simples et de nombre à nombre. Tous ces phénomènes dépendent de la forme des molécules élémentaires, des lois de leurs forces attractives, de la force répulsive de l'électricité et de la chaleur, et peut-être d'autres forces encore inconnues. L'ignorance où nous sommes de ces données, et leur complication extrême ne permettent pas d'en soumettre les résultats à l'analyse mathématique. Mais on supplée ce grand avantage, par le rapprochement des faits bien observés, en s'élevant par leur comparaison, à des rapports généraux qui, liant ensemble un grand nombre de phénomènes, sont la base des théories chimiques dont ils étendent et perfectionnent les applications aux arts.

En voyant toutes les parties de la matière, soumises à l'action de forces attractives dont l'une s'étend indéfiniment dans l'espace, tandis que les autres cessent d'être sensibles aux plus petites distances perceptibles à nos sens; on peut se demander si ces dernières forces ne sont pas la première modifiée par la figure et les distances mutuelles des molécules des corps. Pour admettre cette hypothèse, il faut supposer les dimensions de ces molécules, si petites relativement aux intervalles qui les séparent, que leur densité soit incomparablement plus grande que la moyenne densité de leur

ensemble. Une molécule sphérique d'un rayon égal à un millionième de mètre, devrait avoir une densité plus de six mille milliards de fois plus grande que la densité moyenne de la terre, pour exercer à sa surface, une attraction égale à la pesanteur terrestre; or les forces attractives des corps surpassent considérablement cette pesanteur, puisqu'elles infléchissent visiblement la lumière dont la direction n'est point changée sensiblement par l'attraction de la terre. La densité des molécules surpasserait donc incomparablement celles des corps, si leurs affinités n'étaient qu'une modification de la pesanteur universelle. Au reste, rien n'empêche d'adopter cette manière d'envisager tous les corps : plusieurs phénomènes et entre autres, la facilité avec laquelle la lumière traverse dans tous les sens, les corps diaphanes, lui sont très-favorables. Nous avons d'ailleurs dans l'extrême rareté des queues des comètes, un exemple frappant de la porosité presque infinie des substances vaporisées, et il n'est point absurde de supposer la densité des corps terrestres, moyenne entre une densité absolue et celle des vapeurs. Les affinités dépendraient alors de la forme des molécules intégrantes et de leurs positions respectives; et l'on pourrait, par la variété de ces formes. expliquer toutes les variétés des forces attractives, et ramener ainsi à une seule loi générale, tous les phénomènes de la Physique et de l'Astronomie. Mais l'impossibilité de connaître les figures des molécules et leurs distances mutuelles, rend ces explications, vagues et inutiles à l'ayancement des sciences.

LIVRE CINQUIÈME.

PRÉCIS DE L'HISTOIRE DE L'ASTRONOMIE.

Multi pertransibunt, et augebitur scientia.

Bacon.

Nous venons d'exposer les principaux résultats du système du monde, suivant l'ordre analytique le plus direct et le plus simple. Nous avons d'abord considéré les apparences des mouvemens célestes; et leur comparaison nous a conduits aux mouvemens réels qui les produisent. Pour nous élever au principe régulateur de ces mouvemens, il fallait connaître les lois du mouvement de la matière; et nous les avons développées avec étendue. En les appliquant ensuite aux corps du système solaire; nous avons reconnu qu'il existe entre eux, et même entre leurs plus petites molécules, une attraction proportionnelle aux masses et réciproque au carré des distances. Redescendant enfin, de cette force universelle à ses effets; nous en avons vu naître, non-seulement tous les phénomènes connus, ou simplement entrevus par les Astronomes; mais un grand nombre d'autres entièrement nouveaux et que l'observation a vérifiés.

Ce n'est pas ainsi que l'esprit humain est parvenu à ces découvertes. L'ordre précédent suppose que l'on a sous les yeux, l'ensemble des observations anciennes et modernes; et que pour les comparer et pour en déduire les lois des mouvemens célestes et les causes de leurs inégalités, on fait usage de toutes les ressources que présentent aujourd'hui, l'analyse et la mécanique. Mais ces deux branches de nos connaissances, s'étant perfectionnées successivement avec l'Astronomie; leur état à ses diverses époques, a nécessairement influé sur les théories astronomiques. Plusieurs hypothèses ont été généralement admises, quoique directement contraires aux lois fondamentales de la mécanique, que l'on ne connaissait pas encore; et dans cette ignorance, on a élevé contre le vrai système du monde, qui perçait de toutes parts dans les phénomènes, des difficultés qui l'ont fait pendant long-temps méconnaître. Ainsi, la marche de l'Astronomie a été embarrassée, incertaine; et les vérités dont elle s'est enrichie, ont été souvent alliées à des erreurs que le temps, l'observation, et le progrès des sciences accessoires en ont séparées. Nous allons ici donner un précis de son histoire: on y verra l'Astronomie, rester un grand nombre de siècles dans l'enfance; en sortir et s'accroître dans l'école d'Alexandrie; stationnaire ensuite, jusqu'au temps des Arabes, se perfectionner par leurs travaux; enfin abandonnant l'Afrique et l'Asie où elle avait pris naissance, se fixer en Europe. et s'élever en moins de trois siècles, à la hauteur où elle est maintenant parvenue. Ce tableau des progrès de la plus sublime des sciences naturelles, toujours croissans au milieu même des révolutions des Empires, pourra consoler des malheurs dont les récits remplissent les annales de tous les peuples.

CHAPITRE PREMIER.

De l'astronomie ancienne, jusqu'à la fondation de l'école d'Alexandrie.

LE spectacle du ciel dut fixer l'attention des premiers hommes, surtout dans les climats où la sérénité de l'air invitait à l'observation des astres. On eut besoin pour l'agriculture, de distinguer les saisons et d'en connaître le retour. On ne tarda pas à s'apercevoir que le lever et le coucher des principales étoiles, au moment où elles se plongent dans les rayons solaires, ou quand elles s'en dégagent. pouvaient servir à cet objet. Aussi voit-on chez presque tous les peuples, ce genre d'observations remonter jusqu'aux temps dans lesquels se perd leur origine. Mais quelques remarques grossières sur le lever et le coucher des étoiles, ne formoient point une science; et l'Astronomie n'a commencé qu'à l'époque où les observations antérieures ayant été recueillies et comparées entre elles, et les mouvemens célestes ayant été suivis avec plus de soin qu'on ne l'avait fait encore; on essaya de déterminer les lois de ces mouvemens. Celui du soleil dans un orbe incliné à l'équateur, le mouvement de la lune, la cause de ses phases et des éclipses, la connaissance des planètes et de leurs révolutions, la sphéricité de la terre et sa mesure, ont pu être l'objet de cette antique Astronomie; mais le peu de monumens, qui nous en reste, est insuffisant pour en fixer l'époque et l'étendue. Nous pouvons seulement juger de sa haute antiquité, par les périodes astronomiques qui nous sont parvenues, et qui supposent une suite d'observations, d'autant plus longue, que ces observations étaient plus imparfaites. Telle a été la vicissitude des choses humaines, que celui des

arts qui peut seul transmettre à la postérité, d'une manière durable, les événemens des siècles écoulés, l'imprimerie étant d'une invention moderne; le souvenir des premiers inventeurs s'est entièrement effacé. De grands peuples ont disparu sans laisser sur leur passage, des traces de leur existence. La plupart des cités les plus célèbres de l'antiquité, ont péri avec leurs annales, et la langue même que parlaient leurs habitans : à peine reconnaît-on la place où fut Babylone. De tant de monumens des arts et de l'industrie, qui décoraient ces cités, et qui passaient pour les merveilles du monde, il ne reste plus qu'une tradition confuse et quelques débris épars dont l'origine est le plus souvent incertaine; mais dont la grandeur atteste la puissance des peuples qui ont élevé ces monumens.

Il paraît que l'Astronomie-pratique des premiers temps, se bornait aux observations du lever et du coucher des principales étoiles, de leurs occultations par la lune et les planètes, et des éclipses. On suivait la marche du soleil, au moyen des étoiles qu'effaçait la lumière des crépuscules, et par les variations des ombres méridiennes des gnomons: on déterminait le mouvement des planètes, par les étoiles dont elles s'approchaient dans leur cours. Pour reconnaître tous ces astres et leurs mouvemens divers, on partagea le ciel en constellations; et cette zône céleste nommée zodiaque, dont le soleil, la lune et les planètes alors connues ne s'écartaient jamais, fut divisée dans les douze constellations suivantes:

Le Bélier, le Taureau, les Gémeaux, l'Écrevisse, le Lion, la Vierge; La Balance, le Scorpion, le Sagittaire, le Capricorne, le Verseau, les Poissons,

On les nomma Signes, parce qu'elles servaient à distinguer les saisons; ainsi l'entrée du soleil dans la constellation du Bélier, marquait au temps d'Hipparque, l'origine du printemps: cet astre parcourait ensuite le Taureau, les Gémeaux, l'Écrevisse, etc. Mais le mouvement rétrograde des équinoxes changea, quoiqu'avec lenteur, la correspondance des constellations avec les saisons de l'année; et à l'époque de ce grand Astronome, elle était déjà fort différente de celle qui avait eu lieu à l'origine du zodiaque. Cependant l'Astronomie, en se perfectionnant, ayant eu besoin de signes pour

indiquer le mouvement des astres; on continua de désigner, comme Hipparque, l'origine du printemps, par l'entrée du soleil dans le Bélier. Alors on distingua les constellations, des signes du zodiaque, qui ne furent plus qu'une chose fictive, propre à indiquer la marche des corps célestes. Maintenant que l'on cherche à tout ramener aux notions et aux expressions les plus simples, on commence à ne plus considérer les signes du zodiaque; et l'on marque la position des astres sur l'écliptique, par leur distance à l'équinoxe du printemps.

Les noms des constellations du zodiaque, ne leur ont point été donnés au hasard : ils ont exprimé des rapports qui ont été l'objet d'un grand nombre de recherches et de systèmes. Quelques-uns de ces noms paraissent être relatifs au mouvement du soleil : l'Écrevisse, par exemple, et le Capricorne indiquent la rétrogradation de cet astre aux solstices; et la Balance désigne l'égalité des jours et des nuits à l'équinoxe : les autres noms semblent se rapporter à l'agriculture et au climat du peuple chez lequel le zodiaque a pris naissance. Le Capricorne ou la constellation de la Chèpre paraît mieux placée au point le plus élevé de la course du soleil, qu'à son point le plus bas. Dans cette position qui remonte à quinze mille ans, la Balance était à l'équinoxe du printemps; et les constellations du zodiaque avaient des rapports frappans aveo le climat de l'Égypte et son agriculture.

Les Chinois sont de tous les peuples, celui dont les annales nous offrent les plus anciennes observations que l'on puisse employer dans l'Astronomie. Les premières éclipses dont elles font mention, ne peuvent servir qu'à la chronologie, par la manière vague dont elles sont rapportées; mais ces éclipses prouvent qu'à l'époque de l'Empereur Yao, plus de deux mille ans avant notre ère, l'Astronomie était cultivée à la Chine, comme étant la base des cérémonies religieuses. Le calendrier et l'annonce des éclipses, étaient d'importans objets pour lesquels on avait créé un tribunal de mathématiques. On observait dès-lors, les ombres méridiennes du gnomon aux solstices, et le passage des astres au méridien : on mesurait le temps par des clepsidres; et l'on déterminait la position de la lune par rapport aux étoiles, dans les éclipses; ce qui donnait les positions sidérales du soleil et des solstices. Par la

réunion de ces moyens, on avait reconnu que la durée de l'année astronomique ou solaire, surpasse d'un quart de jour environ, trois cent soixante-cinq jours. Elle commençait au solstice d'hiver: l'année civile était lunaire; et pour la ramener à l'année astronomique, on faisait usage de la période de dix-neuf années solaires correspondantes à deux cent trente-einq lunaisons, période que Meton, plus de seize siècles après, introduisit dans le calendrier des Grecs. Les Chinois avaient au lieu du siècle, un cycle de soixante ans, et un cycle de soixante jours, au lieu de la semaine: mais ce petit cycle de sept jours, en usage dans tout l'Orient. leur était connu depuis les temps les plus reculés. La division de la circonférence fut toujours en Chine, subordonnée à la longueur de l'année, de manière que le soleil décrivit exactement un degré par jour; mais les divisions du degré, du jour, des poids et de toutes les mesures linéaires, étaient décimales; et cet exemple donné par la plus nombreuse nation de la terre, prouve que ces divisions qui d'ailleurs offrent tant d'avantages, peuvent devenir par l'usage, extrêmement populaires.

Les premières observations chinoises, utiles à l'Astronomie. sont de Tcheou-Kong dont la mémoire est encore en vénération à la Chine, comme celle de l'un des meilleurs princes qui l'aient gouvernée. Frère de Vou-Vang, fondateur de la dynastie des Tcheou. il régit l'Empire après sa mort, pendant la minorité de son neveu. depuis l'an 1104 jusqu'à l'an 1008 avant notre ère. Confucius, dans le Chou-King, le livre le plus révéré des Chinois, fait adresser par ce grand prince à son pupille, les plus sages maximes du gouvernement et de la morale. Tcheou-Kong fit par lui-même et par ses Astronomes, un grand nombre d'observations dont trois nous sont heureusement parvenues, et sont précieuses par leur haute antiquité. Deux d'entre elles sont des longueurs méridiennes du gnomon, observées avec un grand soin, aux solstices d'hiver et d'été, dans la ville de Loyang : elles donnent pour l'obliquité de l'écliptique, à cette ancienne époque, un résultat conforme à la théorie de la pesanteur universelle. L'autre observation est relative à la position du solstice d'hiver dans le ciel, à la même époque. (Note I.)

L'incendie des livres chinois, ordonné par l'empereur Tchi-Hoanti,

vers l'an 250 avant notre ère, fit disparaître beaucoup d'observations intéressantes : pour en retrouver qui puissent être utiles à l'Astro-'nomie, il faut descendre d'environ quatre siècles depuis Tcheou-Kong, et se transporter en Chaldée. Ptolémée nous en a transmis plusieurs : les plus anciennes sont trois éclipses de lune, observées à Babylone, dans les années 719 et 720 avant notre ère, et dont il a fait usage pour déterminer les mouvemens de la lune. Sans doute, Hipparque et lui n'en avaient point de plus anciennes, qui fussent assez précises pour servir à ces déterminations dont l'exactitude est en raison de l'intervalle qui sépare les observations extrêmes. Cette considération doit diminuer nos regrets de la perte des observations chaldéennes qu'Aristote, si l'on en croit Simplicius, se fit communiquer par l'entremise de Callisthène, et qui remontaient jusqu'à dix-neuf siècles avant Alexandre. Mais les Chaldéens n'ont pu découvrir que par une longue suite d'observations, la période de deux cent vingt-trois mois lunaires, qu'ils nommaient saros, et qui a l'avantage de ramener à peu près, la lune à la même position à l'égard de ses nœuds, de son périgée et du soleil. Ainsi les éclipses observées dans une période, fournissaient un moyen simple de prédire celles qui devaient avoir lieu dans les périodes suivantes. Cette période et la manière ingénieuse avec laquelle ils calculaient la principale inégalité lunaire, ont exigé un grand nombre d'observations comparées entre elles avec adresse : c'est le monument astronomique, le plus curieux avant la fondation de l'école d'Alexandrie. (Note II.) Voilà ce que l'on connaît avec certitude, sur l'Astronomie d'un peuple que l'antiquité regarda comme le plus instruit dans la science des astres. Les opinions des Chaldéens sur le système du monde, ont été très-variées, comme cela devait être à l'égard d'objets que l'observation et la théorie n'avaient point encore éclairés. Cependant, quelques-uns de leurs philosophes plus heureux que les autres, ou guidés par des vues plus saines sur l'ordre et l'immensité de l'univers, ont pensé que les comètes étaient, ainsi que les planètes, assujéties à des mouvemens réglés par des lois éternelles.

Nous avons très-peu de renseignemens certains sur l'Astronomie des Égyptiens. La direction exacte des faces de leurs pyramides vers les quatre points cardinaux, donne une idée avantageuse de leur manière d'observer; mais aucune de leurs observations n'est parvenue jusqu'à nous. On doit être étonné que les Astronomes d'Alexandrie aient été forcés de recourir aux observations chaldéennes; soit que la mémoire des observations égyptiennes ait dès-lors été perdue, soit que les Égyptiens n'aient pas voulu les communiquer, par un sentiment de jalousie qu'a pu faire naître la faveur des Souverains pour l'école qu'ils avaient fondée. Avant cette époque, la réputation de leurs prêtres avait attiré les premiers philosophes de la Grèce. Thalès, Pythagore, Eudoxe et Platon allèrent puiser chez eux, les connaissances dont ils enrichirent leur patrie; et il est vraisemblable que l'école de Pythagore leur fut redevable de quelques-unes des idées saines qu'elle professa sur la constitution de l'univers. Macrobe leur attribue expressément, la pensée des mouvemens de Mercure et de Vénus autour du soleil. Leur année civile était de trois cent soixante cinq jours : elle était divisée en douze mois de trente jours, et ils ajoutaient à la fin, cinq jours complémentaires ou épagomènes. Mais l'observation des levers héliaques de Syrius, la plus brillante des étoiles, leur avait appris que le retour de ces levers retardait alors, chaque année, d'un quart de jour; et ils avaient fondé sur cette remarque, la période sothique de 1460 ans, qui ramenait à peu près aux mêmes saisons, leurs mois et leurs fêtes. Notre ère a commencé vers la treize cent vingthuitième année d'une de ces périodes dont la première origine est inconnue. Suivant Dion Cassius, la semaine est due aux Égyptiens. Cette période est fondée sur le plus ancien système d'Astronomie. qui plaçait le soleil, la lune et les planètes, dans cet ordre de distance à la terre : la Lune, Mercure, Vénus, le Soleil, Mars, Jupiter et Saturne. Les parties successives de la série des jours divisés en vingt-quatre suivant Dion, ou seulement en quatre selon d'autres auteurs, étaient consacrées dans le même ordre, à ces astres, en rétrogradant sans cesse de la lune à Saturne dans le premier cas: et en revenant de Saturne à la lune, dans le second. Chaque jour prenait son nom, de l'astre correspondant à sa première partie. La semaine se retrouve dans l'Inde parmi les Brames, et avec nos dénominations; et je me suis assuré que les jours dénommés par eux et par nous de la même manière, répondent aux mêmes instans

physiques. Cette période était en usage chez les Arabes, les Juis; les Assyriens, en Chine, et dans tout l'Orient. Il est impossible au milieu de tant de peuples divers, d'en reconnaître l'inventeur: nous pouvons seulement affirmer qu'elle est le plus ancien monument des connaissances astronomiques.

Ces connaissances paraissent avoir été la base de toutes les théogonies, dont l'origine s'explique ainsi de la manière la plus simple. En Chaldée et dans l'ancienne Égypte, l'Astronomie ne fut cultivée que dans les temples, par des prêtres qui fondérent sur elle, les superstitions dont ils étaient les ministres. L'histoire fabuleuse des héros et des dieux qu'ils présentaient à la crédule ignorance, n'était qu'une allégorie des phénomènes célestes et des opérations de la nature, allégorie que le pouvoir de l'imitation, l'un des principaux ressorts du monde moral, a perpétuée jusqu'à nous dans les institutions religieuses. Profitant pour consolider leur empire, du desir si naturel de pénétrer l'avenir, ils créèrent l'Astrologie. L'homme porté par les illusions des sens, à se regarder comme le centre de l'univers, se persuada facilement que les astres influent sur sa destinée, et qu'il est possible de la prévoir par l'observation de leurs aspects au moment de sa naissance. Cette erreur chère à son amour-propre, et nécessaire à son inquiète curiosité, est aussi ancienne que l'Astronomie : elle s'est maintenue jusqu'à la fin de l'avant-dernier siècle, époque à laquelle la connaissance généralement répandue du vrai système du monde, l'a fait pour toujours disparaître.

L'origine de l'Astronomie en Perse et dans l'Inde, se perd comme chez tous les peuples, dans les ténèbres des premiers temps de leur histoire. Les Tables indiennes supposent une Astronomie assez avancée; mais tout porte à croire qu'elles ne sent pas d'une haute antiquité. Ici je m'éloigne avec peine, de l'opinion d'un illustre et malheureux ami dont la mort, éternel sujet de douleurs et de regrets, est une preuve affreuse de l'inconstance de la faveur populaire. Après avoir honoré sa vie, per des travaux utiles aux sciences et à l'humanité, par ses vertus et par un noble caractère; il périt victime de la plus sanguinaire tyrannie, opposant le calme et la dignité du juste, aux outrages d'un peuple dont il avait été

l'idole. Les Tables indiennes ont deux époques principales qui remontent, l'une à l'année 3102 avant notre ère, l'autre à 1401. Ces époques sont liées par les mouvemens du soleil, de la lune et des planètes, de manière qu'en partant de la position que les Tables indiennes assignent à tous ces astres à la seconde époque, et remontant à la première au moyen de ces Tables, on trouve la conjonction générale qu'elles supposent à cette époque. Le savant célèbre dont je viens de parler, Bailli, a cherché à établir dans son Traité de l'Astronomie indienne, que cette première époque était fondée sur les observations. Malgré ses preuves exposées avec la clarté qu'il a su répandre sur les matières les plus abstraites, je regarde comme très-vraisemblable qu'elle a été imaginée pour donner dans le zodiaque, une commune origine aux mouvemens des corps célestes. Nos dernières Tables astronomiques, considérablement persectionnées par la comparaison de la théorie avec un grand nombre d'observations très-précises, ne permettent pas d'admettre la conjonction supposée dans les Tables indiennes: elles offrent même à cet égard, des différences beaucoup plus grandes que les erreurs dont elles sont encore susceptibles. A la vérité, quelques élémens de l'Astronomie des Indiens, n'ont pu avoir la grandeur qu'ils leur assignent, que long-temps avant notre ère: il faut, par exemple, remonter jusqu'à six mille ans, pour retrouver leur équation du centre du soleil. Mais indépendamment des erreurs de leurs déterminations, on doit observer qu'ils n'ont considéré les inégalités du soleil et de la lune, que relativement aux éclipses, dans lesquelles l'équation annuelle de la lune s'ajoute à l'équation du centre du soleil, et l'augmente d'une quantité à peu près égale à la différence de sa véritable valeur, à celle des Indiens. Plusieurs élémens, tels que les équations du centre de Jupiter et de Mars, sont très-différens dans les Tables indiennes, de ce qu'ils devaient être à leur première époque : l'ensemble de ces Tables, et surtout l'impossibilité de la conjonction générale qu'elles supposent, prouvent qu'elles ont été construites, on du moins rectifiées dans des temps modernes. C'est ce qui résulte encore des moyens mouvemens qu'elles assignent à la lune par rapport à son périgée, à ses nœuds et au soleil, et qui plus rapides que suivant Ptolémée,

indiquent qu'elles sont postérieures à cet astronome; car on a vu que ces trois mouvemens s'accélèrent de siècle en siècle. Cependant, l'antique réputation des Indiens ne permet pas de douter qu'ils aient dans tous les temps, cultivé l'Astronomie. Lorsque les Grecs et les Arabes commencèrent à se livrer aux sciences; ils allèrent en puiser chez eux, les premiers élémens. C'est de l'Inde que nous vient l'ingénieuse méthode d'exprimer tous les nombres avec dix caractères, en leur donnant à-la-fois, une valeur absolue et une valeur de position; idée fine et importante, qui nous paraît maintenant si simple, que nous en sentons à peine, le mérite. Mais cette simplicité même, et l'extrême facilité qui en résulte pour tous les calculs, placent notre système d'arithmétique, au premier rang des inventions utiles; et l'on appréciera la difficulté d'y parvenir, si l'on considère qu'il a échappé au génie d'Archimède et d'Appollonius, deux des plus grands hommes dont l'antiquité s'honore.

Les Grecs n'ont commencé à cultiver l'Astronomie, que longtemps après les Egyptiens dont ils ont été les disciples. Il est difficile, à travers les fables qui remplissent les premiers siècles de leur histoire, de démêler leurs connaissances astronomiques. Il paraît seulement qu'ils avaient partagé le ciel en constellations. treize ou quatorze siècles avant l'ère chrétienne; car c'est à cette époque, que la sphère d'Eudoxe doit être rapportée. Leurs nombreuses écoles offrent très-peu d'observateurs avant celle d'Alexandrie: ils y traitèrent l'Astronomie, comme une science purement spéculative, et en se livrant à de frivoles conjectures. Il est singulier qu'à la vue de cette foule de systèmes qui se combattaient sans rien apprendre, la réflexion très-simple, que le seul moyen de connaître la nature, est de l'interroger par l'expérience, ait échappé à tant de philosophes dont plusieurs étaient doués d'un rare génie. Mais on en sera moins étonné, si l'on considère que les premières observations ne présentant que des faits isolés et sans attrait pour l'imagination impatiente de remonter aux causes; elles ont dû se succéder avec une extrême lenteur. Il a fallu qu'une longue suite de siècles les accumulat en assez grand nombre, pour découvrir entre les phénomènes, des rapports qui s'étendant de plus en plus, réunissent à l'intérêt de la vérité,

telul des spéculations générales auxquelles l'esprit humain tend sans cesse à s'élever.

Cependant, au milieu des rêves philosophiques des Grecs, on voit percer sur l'Astronomie, des idées saines qu'ils recueillirent dans leurs voyages et qu'ils perfectionnèrent. Thalès, né à Milet, l'an 640 avant notre ère, alla s'instruire en Egypte: revenu dans la Grèce, il fonda l'école Ionienne, et il y enseigna la sphéricité de la terre, l'obliquité de l'écliptique, et les véritables causes des éclipses du soleil et de la lune. Il parvint même à les prédire, en employant sans doute, les méthodes ou les périodes que les prêtres égyptiens lui avaient communiquées.

Thales eut pour successeurs, Anaximandre, Anaximène et Anaxagore. Les deux premiers introduisirent dans la Grèce, l'usage du gnomon et des cartes géographiques. Anaxagore fut persécuté par les Athéniens, pour avoir enseigné les vérités de l'école l'onienne. On lui reprocha d'anéantir l'influence des dieux sur la nature, en essayant d'assujétir ses phénomènes à des lois immuables. Proscrit avec ses enfans, il ne dut la vie, qu'aux soins de Périclès son disciple et son ami, qui parvint à faire changer la peine de mort, en exil. Ainsi la vérité pour s'établir sur la terre, a souvent eu à combattre des erreurs accréditées qui, plus d'une fois, ont été funestes à ceux qui l'ont fait connaître.

De l'école Ionienne sortit le chef d'une école beaucoup plus célèbre. Pythagore, né à Samos vers l'an 590 avant notre ère, fut d'abord disciple de Thalès qui lui conseilla de voyager en Égypte où il se fit initier aux mystères des prêtres, pour connaître à fond leur doctrine. Ensuite, il alla sur les bords du Gange, interroger les Bracmanes. De retour dans sa patrie, le despetisme sous lequel elle gémissait alors, le força de s'en exiler, et il se retira en Italie où il fonda son école. Toutes les vérités astronomiques de l'école Ionienne furent enseignées avec plus de développement dans celle de Pythagore; mais ce qui la distingue principalement, est la connaissance des deux mouvemens de la terre, sur ellemême et autour du soleil. Pythagore l'enveloppa d'un voile, pour la cacher au vulgaire; mais elle fut exposée dans un grand jour, par son disciple Philolaus.

47.

Suivant les Pythagoriciens, les comètes elles-mêmes sont les mouvement comme les planètes, autour du soleil : ce ne sont point des météores passagers formés dans notre atmosphère, mais des ouvrages éternels de la nature. Ces notions parfaitement justes du système du Monde, ont été saisies et présentées par Sénéque. avec l'enthousiasme qu'une grande idée sur l'un des objets les plus vastes des connaissances humaines it doit exciter dans l'ame de philosophe: « Ne nous étonnons point, dit-il, que l'on ignore encore » la loi du mouvement des comètes dont le spectacle est si rare: » et qu'on ne connaisse ni le commencement ni la fin de la » révolution de ces astres qui descendent d'une énorme distance. » Il n'y a pas quinze cents ans que la Grèce a compté les étoiles. » et leur a donné des noms..... Le jour viendra que par une étude n suivie de plusieurs siècles, les choses actuellement cachées » paraîtront avec évidence; et la postérité s'étonnera que des vérités » si claires nous aient échappé, ». On pensait encore dans la même école, que les planètes sont habitées, et que les étoiles sont des soleils disséminés dans l'espace, et les centres d'autent de systèmes planétaires. Ces vues philosophiques auraient du par leur grandeur et leur justesse, entraîner les suffrages de l'antiquité; mais ayant été accompagnées d'opinions systématiques, telles que l'harmonie des sphères célestes, et manquant d'ailleurs des preuves qu'elles ent acquises depuis par leur accord avec les observations; il n'est pas surprenant que leur vérité, contraire aux illusions des sens. ait été méconnue.

La seule observation que l'histoire de l'Astronomie nous offre chez les Grecs, avant l'école d'Alexandrie, est celle du solstice d'été de l'an 45 a avant notre ère, par Meton et Euctemon. Le premier de ces astronomes se rendit célèbre par le cycle de dixneuf années correspondantes à deux cent trents-cinq lunaisons, qu'il introduisit dans le calendrier. La méthode la plus simple de mesurer le temps, est celle qui n'emploie que les révolutions solaires; mais dans le premier âgs des peuples, les phases de la lune offraient à leur ignorance, une divisiba si naturelle du temps, qu'elle fut généralement admise. Ils réglérent leurs fêtes et leurs jeux, sur le retour de ces phases; et quand les besoins de

l'agriculture, les forcèrent de recourir au soleil, pour distinguer les saisons; ils ne renoncèrent point à l'ancien usage de mesurer le temps par les révolutions de la lune dont on pouvait ainsi connaître l'âge, par les jours du mois. Ils cherchèrent à établir entre les révolutions de cet astre et celles du soleil, un accord fondé sur des périodes qui rensermassent des nombres entiers de ces révolutions. La plus simple est celle de dix-neuf ans; Meton établit donc un cycle de dix-neuf années lunaires dont douze étaient communes ou de douze mois; les sept autres en avaient treize. Ces mois étaient inégaux et ordonnés de manière que sur les deux cent trente-cinq mois du cycle, cent quatorze étaient de vingt-neuf jours, et cent vingt-un de trente jours. Cet arrangement proposé par Meton, à la Grèce assemblée dans les jeux olympiques, fut reçu avec un applaudissement universel, et unanimement adopté par toutes les villes et les colonies grecques. Mais on ne tarda pas à s'aperceyoir qu'à la fin d'une période, le nouveau calendrier avançait d'environ, un quart de jour sur la nouvelle lune, Calippe proposa de quedrupler de cycle de dix-neuf ans, et d'en former une période de soixante et seize ans, à la fin de laquelle on retrancherait un jour. Cette nouvelle période fut nommée Calippique, du nom de son auteur.

Vers le temps d'Alexandre, Pythéss illustra Marseille sa patrie, comme géographe et comme astronome. On lui doit une observation de la lengueur méridienne du gnomon, au solstice d'été dans cette ville : c'est la plus ancienne observation de ce genre, après celle de Tcheou-Kong. Elle est précieuse en oe qu'elle confirme la diminution successive de l'obliquité de l'écliptique (Not. III). On doit regretter que les anciens astronomes n'aient pas fait un plus grand usage du gnomon qui comporte bien plus d'exactitude que leurs armilles. En prenant quelques précautions faciles, pour niveler la surface sur laquelle l'ombre se projette, ils auraient pu nous laisser sur les déclinaisons du soleil et de la lune, des observations qui seraient maintenant fort utiles.

CHAPITRE IL

De l'Astronomie depuis la fondation de l'école d'Alexandrie jusqu'aux Arabes.

Jusqu'ici l'Astronomie-pratique des divers peuples, n'a présenté que des observations relatives aux phénomènes des saisons et des éclipses, objets de leurs besoins ou de leurs frayeurs. Quelques périodes fondées sur de très-longs intervalles de temps, et d'heureuses conjectures sur la constitution de l'univers, mêlées à beaucoup d'erreurs, formaient toute leur Astronomie théorique. Nous voyons pour la première fois, dans l'école d'Alexandrie, un système combiné d'observations faites avec des instrumens propres à mesurer des angles, et calculées par les méthodes trigonométriques. L'Astronomie prit alors une forme nouvelle que les siècles suivans n'ont fait que perfectionner. La position des étoiles fut déterminée avec plus d'exactitude qu'on ne l'avait fait encore : les inégalités des mouvemens du soleil et de la lune, furent mieux connues: on suivit avec soin les mouvemens des planètes. Enfin, l'école d'Alexandrie donna naissance au premier système astronomique qui ait embrassé l'ensemble des phénomènes célestes; système, à la vérité, bien inférieur à celui de l'école de Pythagore; mais qui fondé sur la comparaison des observations, offrait dans cette comparaison même, le moyen de le rectifier et de s'élever au vrai système de la nature dont il est une ébauché imparfaite.

Après la mort d'Alexandre, ses principaux capitaines se divisèrent son empire, et Ptolémée Soter eut l'Égypte en partage. Son amour pour les sciences et ses bienfaits attirérent dans Alexandrie capitale de ses états, un grand nombre de sayans de la Grèce. Héritier de son trône et de ses goûts, son fils Ptolémée Philadelphe les y fixa par une protection particulière. Il leur donna pour demeure, un vaste édifice qui renfermait un observatoire, et cette fameuse bibliothèque que Démétrius de Phalère rassembla avec tant de soins et de dépense. Ayant ainsi les instrumens et les livres qui leur étaient nécessaires; ils se livraient sans distraction, à leurs travaux qu'excitait encore la présence du prince qui venait s'entretenir souvent avec eux. Le mouvement imprimé aux sciences par cette école, et les grands hommes qu'elle produisit ou qui lui furent contemporains, font de l'époque des Ptolémées, l'une des plus mémorables de l'histoire de l'esprit humain.

Aristille et Timocharis furent les premiers observateurs de l'école d'Alexandrie: ils fleurirent vers l'an 300 avant notre ère. Leurs observations sur la position des principales étoiles du zodiaque, firent découvrir à Hipparque, la précession des équinoxes, et servirent de base à la théorie que Ptolémée donna de te phénomène.

Le premier Astronome que cette école nous offre après eux, est Aristarque de Samos. Les élémens les plus délicats de l'Astronomie, paraissent avoir été l'objet de ses recherches : malheureusement, elles ne sont point parvenues jusqu'à nous. Le seul de ses ouvrages, qui nous reste, est son Traité des grandeurs et des distances du soleil et de la lune, dans lequel il expose la manière ingénieuse dont il essaya de déterminer le rapport de ces distances. Aristarque mesura l'angle compris entre les deux astres, au moment où il jugea l'exacte moitié du disque luneire, éclairée. A cet instant, le rayon visuel mené de l'œil de l'observateur, au centre de la lune, est perpendiculaire à la ligne qui joint les centres de la lune et du soleil; ayant donc trouvé l'angle à l'observateur, plus petit que l'angle droit, d'un trentième de cet angle; il en conclut que le soleil est dix-neuf fois plus éloigné de nous , que la lune ; résultat qui malgré son inexactitude, reculait les bornes de l'univers, beaucoup au-delà de celles qu'on lui assignait alors. Dans ce Traité, Aristarque suppose les diamètres apparens du soleil et de la lune, égaux entre eux et à la 1800 partie de la circonférence, valeur beaucoup trop grande; mais il corrigea dans la suite, cette erreur; car nous

tenons d'Archimède, qu'il faisait le diamètre du soleil, égal à la 720^{me} partie du zodiaque; ce qui tient le milieu entre les limites qu'Archimède lui-même, peu d'années après, assigna par un procédé très-ingénieux, à ce diamètre. Cette correction fut inconnue à Pappus géomètre célèbre d'Alexandrie, qui vécut dans le quatrième siècle, et qui commenta le Traité d'Aristarque. Cela peut faire soupçonner que l'incendie d'une partie considérable de la bibliothèque d'Alexandrie, pendant le siège que César soutint dans cette ville, avait déjà fait disparaître la plupart des écrits d'Aristarque, ainsi qu'un grand nombre d'autres ouvrages également précieux.

Aristarque fit revivre l'opinion de l'école Pythagoricienne, sur le mouvement de la terre; mais nous ignorons jusqu'à quel point il avait avancé par ce moyen, l'explication des phénomènes célestes. Nous savons seulement que ce judicieux astronome considérant que le mouvement de la terre n'affecte point d'une manière sensible, la position apparente des étoiles, les avait éloignées de nous, incomparablement plus que le soleil : il paraît être ainsi dans l'antiquité, celui qui ent les plus justes notions de la grandeur de l'univers. Elles nous ont été transmises par Archimède, dans son Traité de l'Arénaire. Ce grand Géomètre avait découvert le moyen d'exprimer tous les nombres, en les concevant formés de périodes successives de myriades de myriades : les unités de la première étaient des unités simples : celles de la seconde, étaient des myriades de myriades, et ainsi de suite : il désignait les parties de chaque période, par les mêmes caractères que les Grecs employaient dans leur numération jusqu'à cent millions. Pour faire sentir l'avantage de sa méthode, Archimède se propose d'exprimer le nombre des grains de sable, que la sphère céleste peut contenir, problème dont il accroit la difficulté, en choisissant l'hypothèse qui donne à cette sphère, la plus grande étendue: c'est dans cette vue, qu'il expose le sentiment d'Aristarque.

La célébrité de son successeur Ératosthène, est due principalement à sa mesure de la terre : elle est, en effet, la première tentative de ce genre, que nous offre l'histoire de l'Astronomie; Il est très-vraisemblable que long-temps auparavant, on avait essayé de mesurer la terre; mais il ne reste de ces opérations; que quelques évaluations de la circonférence terrestre, que l'on a cherché par des rapprochemens plus ingénieux que certains, à ramener à une même valeur à très-peu près consorme à celle qui résulte des opérations modernes. Eratosthène ayant remarqué à Syène, un puits dont le soleil éclairait au solstice d'été, toute la profondeur, et comparant cette observation à celle de la hauteur méridienne du soleil au même solstice à Alexandrie, trouva l'arc céleste compris entre les zéniths de ces deux villes, égal à la cinquantième partie de la circonférence; et comme leur distance était estimée de cinq mille stades; il fixa à deux cent cinquante mille stades, la longueur entière du méridien terrestre. Il est peu probable que pour une recherche aussi importante, cet astronome se soit contenté de l'observation grossière d'un puits éclairé par le soleil. Cette considération et le récit de Cléomède, autorisent à penser qu'il fit usage de l'observation des longueurs méridiennes du gnomon aux deux solstices d'hiver et d'été, à Syène et à Alexandrie. C'est la raison pour laquelle l'arc céleste qu'il détermina entre les zéniths de ces deux villes, s'éloigne peu du résultat des observations modernes. Mais la plus grande incertitude que laisse cette mesure de la terre, est relative à la valeur du stade employé par Ératosthène, et qu'il est difficile de reconnaître au milieu des stades nombreux qui furent en usage dans la Grèce.

Ératosthène mesura encore l'obliquité de l'écliptique, et il trouva la distance des tropiques, égale à onze parties de la circonférence divisée en quatre-vingt-trois: Hipparque et Ptolémée n'apportèrent aucun changement à cette valeur, par de nouvelles observations.

De tous les Astronomes de l'antiquité, celui qui par le grand nombre et la précision des observations, par les conséquences importantes qu'il sut tirer de leur comparaison entre elles et avec les observations antérieures, et par la méthode qui le guida dans ses recherches, mérita le mieux de l'Astronomie, est Hipparque de Nicée en Bithynie, qui vécut dans le second siècle avant notre ère. Ptolémée à qui nous devons principalement la connaissance de ses travaux, et qui s'appuie sans cesse sur ses observations et ses théories, le qualifie avec justice, d'Astronome d'une grande adresse, d'une sagacité rare, et sincère ami de la vérité. Peu

content de ce que l'on avait fait jusqu'alors, Hipparque voulut tout recommencer et n'admettre que des résultats fondés sur une nouvelle discussion des observations, ou sur des observations nouvelles plus exactes que celles de ses prédécesseurs. Rien ne fait mieux connaître l'incertitude des observations égyptiennes et chaldéennes sur le soleil et les étoiles, que la nécessité ou il se trouva, d'employer celles des premiers Astronomes d'Alexandrie, pour établir ses théories du soleil et de la précession des équinoxes. Il détermina la durée de l'année tropique, en comparant une de ses observations du solstice d'été, avec celle d'un pareil solstice, qu'Aristarque avait faite dans l'année 281 avant notre ère. Cette durée lui parut un peu moindre que l'année de 365 : Ladoptée jusqu'alors, et il trouva qu'à la fin de trois siècles, il fallait retrancher un jour. Mais il remarqua lui-même le peu d'exactitude d'une détermination fondée sur les observations des solstices, et l'avantage de se servir pour cet objet, des observations des équinoxes. Celles qu'il fit dans un intervalle de trente-trois ans, le conduisirent à peu près au même résultat. Hipparque reconnut encore que les deux intervalles d'un équinoxe à l'autre, étaient inégaux entre eux, et inégalement partagés par les solstices, de manière qu'il s'écoulait quatre-vingt-quatorze jours et demi, de l'équinoxe du printemps au solstice d'été, et quatre-vingtdouze jours et demi, de ce solstice à l'équinoxe d'automne.

Pour expliquer ces différences, Hipparque fit mouvoir le soleil uniformément dans un orbe circulaire; mais au lieu de placer la terre à son centre, il l'en éloigna de la vingt-quatrième partie du rayon, et il fixa l'apogée au sixième degré des Gémeaux. Avec ces données, il forma les premières Tables du soleil, dont il soit fait mention dans l'histoire de l'Astronomie. L'équation du centre, qu'elles supposent, était trop grande: on peut croire avec beaucoup de vraisemblance, que la comparaison des éclipses dans lesquelles cette équation paraît augmentée de l'équation annuelle de la lune, a confirmé Hipparque dans son erreur, et peut-être même l'a produite; car cette erreur qui surpassait un sixième de la valeur entière de l'équation, se réduisait au seizième de cette valeur, dans le calcul de ces phénomènes. Il se trompait encore en supposant circulaire, l'orbe elliptique du soleil, et en regardant comme uniforme, la

vitesse réelle de cet astre. Nous sommes assurés aujourd'hui du contraire, par les mesures de son diamètre apparent; mais ce genre d'observations était impossible au temps d'Hipparque, et ses Tables du soleil, malgré leur imperfection, sont un monument durable de son génie, que Ptolémée respecta au point d'y assujétir ses propres observations.

Ce grand Astronome considéra ensuite les mouvemens de la lune. Il détermina par la comparaison d'un très-grand nombre d'éclipses choisies dans les circonstances les plus favorables, les durées de ses révolutions relativement aux étoiles, au soleil, à ses nœuds et à son apogée. Le résultat auquel il parvint, est peut-être le plus précieux de l'ancienne Astronomie, par son exactitude, et parce qu'il représente à cette époque, la durée sans cesse variable de ces révolutions (Note IV). Hipparque détermina encore, l'excentricité de l'orbe lunaire et son inclinaison à l'écliptique; et il les trouva les mêmes à très-peu près que celles qui ont lieu maintenant dans les éclipses où l'on sait que l'un et l'autre de ces élémens, sont diminués par l'évection et par la grande inégalité du mouvement de la lune en latitude. La constance de l'inclinaison de l'orbe lunaire au plan de l'écliptique, malgré les variations que ce plan éprouve par rapport aux étoiles, et qui par les observations anciennes, sont sensibles sur son obliquité à l'équateur, est comme on l'a vu dans le quatrième livre, un résultat de la pesanteur universelle, que confirment les observations d'Hipparque (*). Enfin il détermina la parallaxe de la lune, dont il essaya de conclure celle du soleil, par la largeur du cône d'ombre

48

^(*) Kepler a remarqué cette constance, à la fin de son Epitome de l'Astronomie copernicienne; mais il la fonde sur une considération très-singulière. « Il convient, » dit-il, que la lune, planète secondaire et satellite de la terre, ait une inclinaison » constante sur l'orbe terrestre, quelques variations que ce plan éprouve dans » sa position relative aux étoiles; et si les observations anciennes sur les plus » grandes latitudes de la lune et sur l'obliquité de l'écliptique, se refusaient à cette » hypothèse, il faudrait plutôt que de la rejeter, les révoquer en doute. » Ici les raisons de convenance et d'harmonie, ont conduit Kepler à un résultat juste; mais combien de fois ne l'ont-elles pas égaré? En se livrant ainsi à son imagination et à l'esprit de conjectures, on peut rencontrer la vérité par un heureux hasard; mais l'impossibilité de la reconnaître au milieu des erreurs dont elle est presque

terrestre, au point où la lune le traverse dans ses éclipses; ce qui le conduisit à la valeur de cette parallaxe, trouvée par Aristarque.

Hipparque fit un grand nombre d'observations des planètes; mais trop ami de la vérité, pour former sur leurs mouvemens, des hypothèses incertaines, il laissa le soin à ses successeurs, d'en établir les théories.

Une nouvelle étoile qui parut de son temps, lui fit entreprendre un catalogue de ces astres, pour mettre la postérité en état de reconnaître les changemens que le spectacle du ciel pourrait éprouver : il sentait d'ailleurs l'importance de ce catalogue, pour les observations de la lune et des planètes. La méthode dont il se servit, est celle qu'Aristille et Timocharis avaient déjà employée, et la même que nous avons exposée dans le treizième chapitre du premier livre. Le fruit de cette longue et pénible entreprise, fut l'importante découverte de la précession des équinoxes. En comparant ses observations à celles de ces Astronomes, Hipparque reconnut que les étoiles avaient changé de position par rapport à l'équateur, et qu'elles avaient conservé la même latitude au-dessus de l'écliptique. Il soupçonna d'abord que cela n'avait lieu que pour les étoiles situées dans le zodiaque; mais ayant observé qu'elles conservaient toutes, la même position respective, il en conclut que ce phénomène était général. Pour l'expliquer, il supposa dans la sphère céleste, autour des pôles de l'écliptique, un mouvement direct, d'où résultait un mouvement rétrograde en longitude, dans les équinoxes comparés aux étoiles, mouvement qui lui parut être par siècle, de la trois-cent-soixantième partie du zodiaque. Mais il présenta sa découverte, avec la réserve que devait lui inspirer le peu d'exactitude des observations d'Aristille et de Timocharis.

La géographie est redevable à Hipparque, de la méthode de fixer la position des lieux sur la terre, par leur latitude et par leur longitude pour laquelle il employa le premier, les éclipses de lune. Les nombreux calculs qu'exigèrent toutes ces recherches, lui firent

toujours accompagnée, laisse tout le mérite de sa découverte, à celui qui l'établit solidement par l'observation et par le calcul, les seules bases des connaissances humaines.

inventer ou du moins perfectionner la Trigonométrie sphérique. Malheureusement, les ouvrages qu'il composa sur tous ces objets, ont disparu: nous ne connaissons bien ses travaux, que par l'Almageste de Ptolémée qui nous a transmis les principaux élémens des théories de ce grand Astronome, et quelques-unes de ses observations. Leur comparaison avec les observations modernes, en a fait reconnaître l'exactitude; et l'utilité dont elles sont encore à l'Astronomie, fait regretter les autres, et particulièrement celles qu'il fit sur les planètes dont il ne reste que très-peu d'observations anciennes.

L'intervalle de près de trois siècles, qui sépare Hipparque de Ptolémée, nous offre Géminus et Cléomède, dont les Traités d'Astronomie sont parvenus jusqu'à nous, et quelques observateurs tels qu'Agrippa, Ménélaus et Théon de Smyrne. Nous remarquons encore dans cet intervalle, la réforme du calendrier romain, pour laquelle Jules-César fit venir d'Alexandrie, l'astronome Sosygène. La connaissance précise du flux et du reflux de la mer, paraît appartenir à cette époque: Possidonius reconnut les lois de ce phénomène qui par ses rapports évidens avec les mouvemens du soleil et de la lune, appartiennent à l'Astronomie, et dont Pline le naturaliste a donné une description remarquable par son exactitude.

Ptolémée né à Ptolémaïde en Égypte, fleurit à Alexandrie, vers l'an 150 de notre ère. Hipparque avait donné par ses nombreux traveux, une face nouvelle à l'Astronomie; mais il avait laissé à ses successeurs, le soin de rectifier ses théories par de nouvelles observations, et d'établir celles qui manquaient encore. Ptolémée suivit les vues d'Hipparque, et dans son grand ouvrage intitulé Almageste, il essaya de donner un système complet d'Astronomie.

Sa découverte la plus importante est celle de l'évection de la lune. Avant Hipparque, on n'avait considéré les mouvemens de cet astre, que relativement aux éclipses dans lesquelles il suffisait d'avoir égard à son équation du centre, surtout en supposant avec cet Astronome, l'équation du centre du soleil, plus grande que la véritable; ce qui remplaçait en partie, l'équation annuelle de la lune. Il paraît qu'Hipparque avait reconnu que cela ne représentait plus le mouvement de la lune dans ses quadratures, et que les observa-

tions offraient à cet égard, de grandes anomalies. Ptolémée suivit avec soin ces anomalies: il en détermina la loi, et il en fixa la valeur avec beaucoup de précision. Pour les représenter, il fit mouvoir la lune sur un épicycle porté par un excentrique mobile dont le centre tournait autour de la terre, en sens contraire du mouvement de l'épicycle, de manière que celui-ci fût toujours le plus près de la terre, dans les quadratures, et le plus loin dans les

sysigies.

Ce fut dans l'antiquité, une opinion générale, que le mouvement uniforme et circulaire, comme étant le plus parfait, devait être celui des astres. Cette erreur s'est maintenue jusqu'à Kepler qu'elle arrêta pendant long-temps dans ses recherches. Ptolémée l'adopta, et plaçant la terre au centre des mouvemens célestes, il essaya de représenter leurs inégalités dans cette hypothèse. Que l'on imagine en mouvement sur une première circonférence dont la terre occupe le centre, celui d'une seconde circonférence sur laquelle se meut le centre d'une troisième circonférence, et ainsi de suite jusqu'à la dernière que l'astre décrit uniformément. Si le rayon d'une de ces circonférences surpasse la somme des autres rayons; le mouvement apparent de l'astre autour de la terre, sera composé d'un moyen mouvement uniforme, et de plusieurs inégalités dépendantes des rapports qu'ont entre eux, les rayons des diverses circonférences, et les mouvemens de leurs centres et de l'astre; on peut donc en multipliant et en déterminant convenablement ces quantités, représenter toutes les inégalités de ce mouvement apparent. Telle est la manière la plus générale d'envisager l'hypothèse des épicycles et des excentriques; car un excentrique peut être considéré comme un cercle dont le centre se meut autour de la terre, avec une vîtesse plus ou moins grande, et qui devient nulle s'il est immobile. Les Géomètres avant Ptolémée, s'étaient occupés des apparences du mouvement des planètes dans cette hypothèse; et l'on voit dans l'Almageste, que le grand géomètre Appollonius avait déjà résolu le problème de leurs stations et de leurs rétrogradations.

Ptolémée supposa le soleil, la lune et les planètes, en mouvement autour de la terre dans cet ordre de distances : la Lune, Mercure, Vénus, le Soleil, Mars, Jupiter et Saturne. Chacune des planètes

supérieures au soleil, était mue sur un épicycle dont le centre décrivait autour de la terre, un excentrique, dans un temps égal à celui de la révolution de la planète. La période du mouvement de l'astre sur l'épicycle, était celle d'une révolution solaire; et il se trouvait toujours en opposition au soleil, lorsqu'il atteignait le point de l'épicycle, le plus près de la terre. Rien ne déterminait dans ce système, la grandeur absolue des cercles et des épicycles : Ptolémée n'avait besoin qué de connaître le rapport du rayon de chaque épicycle, à celui du cercle décrit par son centre. Il faisait mouvoir pareillement chaque planète inférieure, sur un épicycle dont le centre décrivait un excentrique autour de la terre; mais le mouvement de ce point était égal au mouvement solaire, et la planète parcourait son épicycle, pendant un temps qui, dans l'Astronomie moderne, est celui de sa révolution autour du soleil : la planète était toujours en conjonction avec lui, lorsqu'elle parvenait au point le plus bas de son épicycle. Rien ne déterminait encore ici, la grandeur absolue des cercles et des épicycles. Les Astronomes antérieurs à Ptolémée, étaient partagés sur les rangs de Mercure et de Vénus dans le système planétaire. Les plus anciens dont il suivit l'opinion, les mettaient au-dessous du soleil : les autres plaçaient ces astres au-dessus : enfin les Égyptiens les faisaient mouvoir autour du soleil. Il est singulier que Ptolémée n'ait pas fait mention de cette hypothèse qui revenait à égaler les excentriques de ces deux planètes, à l'orbe solaire. Si de plus, il avait supposé les épicycles des planètes supérieures. égaux et parallèles à cet orbe; son système se serait réduit à faire mouvoir toutes les planètes autour du soleil, pendant que cet astre circule autour de la terre; et il ne serait plus resté qu'un pas à faire, pour arriver au vrai système du monde. Cette manière de déterminer les arbitraires du système de Ptolémée, en y supposant égaux à l'orbe solaire, les cercles et les épicycles décrits par un mouvement annuel, rend évidente, la correspondance de ce mouvement avec celui du soleil. En modifiant ainsi ce système, il donne les distances moyennes des planètes à cet astre, en parties de sa distance à la terre; car ces distances sont les rapports des rayons des excentriques à ceux des épicycles pour les planètes supérieures, et des rayons des épicycles, aux rayons des excentriques pour les

deux inférieures. Une modification aussi simple et aussi naturelle du système de Ptolémée, a échappé à tous les Astronomes jusqu'à Copernic: aucun d'eux ne paraît avoir été assez frappé des rapports du mouvement géocentrique des planètes avec celui du soleil, pour en rechercher la cause: aucun n'a été curieux de connaître leurs distances respectives au soleil et à la terre: on s'est contenté de rectifier par de nouvelles observations, les élémens déterminés par Ptolémée, sans rien changer à ses hypothèses.

Si l'on peut, au moyen des épicycles, satisfaire aux inégalités du mouvement apparent des astres; il est impossible de représenter en même temps, les variations de leurs distances. Ptolémée ne pouvait connaître que très-imparfaitement ces variations, relativement aux planètes dont il était impossible alors de mesurer les diamètres apparens. Mais les observations de la lune suffisaient pour lui montrer l'erreur de ses hypothèses suivant lesquelles le diamètre de la lune périgée dans les quadratures, serait double à très-peu près de son diamètre apogée dans les sysigies. D'ailleurs, chaque inégalité nouvelle que l'art d'observer, en se perfectionnant, faisait découvrir, surchargeait son système, d'un nouvel épicycle; ainsi loin d'avoir été confirmé par les progrès ultérieurs de l'Astronomie, il n'a fait que se compliquer de plus en plus; et cela seul doit nous convaincre que ce système n'est point celui de la nature. Mais en le considérant comme un moyen de représenter les mouvemens célestes, et de les soumettre au calcul; cette première tentative sur un objet aussi vaste, fait honneur à la sagacité de son auteur. Telle est la faiblesse de l'esprit humain, qu'il a souvent besoin de s'aider d'hypothèses, pour lier entre eux les phénomènes, et pour en déterminer les lois : en bornant les hypothèses à cet usage, en évitant de leur attribuer de la réalité, et en les rectifiant sans cesse par de nouvelles observations; on parvient enfin aux véritables causes, ou du moins, on peut les suppléer et conclure des phénomènes observés, ceux que des circonstances données doivent développer. L'histoire de la philosophie nous offre plus d'un exemple des avantages que les hypothèses peuvent procurer sous ce point de vue, et des erreurs auxquelles on s'expose en les réalisant.

Ptolémée confirma le mouvement des équinoxes, découvert par Hipparque. En comparant ses observations à celles de ses prédécesseurs; il établit l'immobilité respective des étoiles, leur latitude à très-peu près constante au-dessus de l'écliptique, et leur mouvement en longitude, qu'il trouva d'un degré dans quatre-vingt-dix ans, comme Hipparque l'avait soupçonné. Nous savons aujourd'hui que ce mouvement était beaucoup plus considérable; ce qui, vu l'intervalle qui sépare ces deux Astronomes, semble supposer une erreur de plus d'un degré dans leurs observations. Malgré la difficulté que la détermination de la longitude des étoiles, présentait à des observateurs qui n'avaient point de mesures exactes du temps; on est surpris qu'ils aient commis d'aussi grandes erreurs, surtout quand on considère l'accord des observations que Ptolémée cite à l'appui de son résultat. On lui a reproché de les avoir altérées : mais ce reproche n'est point fondé. Son erreur sur le mouvement annuel des équinoxes, me paraît venir de sa trop grande confiance dans la durée qu'Hipparque assigne à l'année tropique. En effet, Ptolémée a déterminé la longitude des étoiles, en les comparant au soleil par le moyen de la lune, ou à la lune elle-même, ce qui revenait à les comparer au soleil, puisque le mouvement synodique de la lune était bien connu par les éclipses; or Hipparque ayant supposé l'année trop longue, et par conséquent le mouvement du soleil par rapport aux équinoxes, plus petit que le véritable; il est clair que cette erreur a diminué les longitudes du soleil, dont Ptolémée a fait usage. Le mouvement annuel en longitude, qu'il attribuait aux étoiles, doit donc être augmenté de l'arc décrit par le soleil, dans un temps égal à l'erreur d'Hipparque sur la longueur de l'année; et alors il devient à fort peu près ce qu'il doit être. L'année sidérale étant l'année tropique augmentée du temps nécessaire au soleil, pour décrire un arc égal au mouvement annuel des équinoxes; il est visible que l'année sidérale d'Hipparque et de Ptolémée, doit peu différer de la véritable: en effet, la différence n'est qu'un dixième de celle qui existe entre leur année tropique et la nôtre.

Ces remarques nous conduisent à examiner si, comme on le pense généralement, le catalogue de Ptolémée est celui d'Hipparque, réduit à son temps, au moyen d'une précession d'un degré dans quatre-vingt-dix ans. On se fonde sur ce que l'erreur constante des longitudes des étoiles de ce catalogue, disparaît quand on le rapporte au temps d'Hipparque; mais l'explication que nous venons de donner de cette erreur, justifie Ptolémée du reproche de s'être approprié l'ouvrage d'Hipparque; et il paraît juste de l'en croire, lorsqu'il dit positivement qu'il a observé les étoiles de ce catalogue; celles même de sixième grandeur. Il remarque en même temps, qu'il a retrouvé à très-peu près les positions des étoiles, qu'Hipparque avait déterminées par rapport à l'écliptique; et l'on est d'autant plus porté à le penser, que Ptolémée tend sans cesse à se rapprocher des résultats de ce grand Astronome qui fut, en effet, bien plus exact observateur.

Ptolémée inscrivit dans le temple de Sérapis à Canope, les principaux élémens de son système astronomique. Ce système a subsisté pendant quatorze siècles: aujourd'hui même qu'il est entièrement détruit, l'Almageste considéré comme le dépôt des anciennes observations, est un des plus précieux monumens de l'antiquité. Malheureusement, il ne renferme qu'un petit nombre des observations faites jusqu'alors. Son auteur n'a rapporté que celles qui lui étaient nécessaires pour expliquer ses théories. Les Tables astronomiques une fois formées, il a jugé inutile de transmettre avec elles, à la postérité, les observations qu'Hipparque et lui avaient employées pour cet objet; et son exemple a été suivi par les Arabes et les Perses. Les grands recueils d'observations précises rassemblées uniquement pour elles-mêmes, et sans aucune application aux théories, appartiennent à l'Astronomie moderne, et sont l'un des moyens les plus propres à la perfectionner.

Ptolémée a rendu de grands services à la géographie, en rassemblant toutes les déterminations de longitude et de latitude des lieux connus, et en jetant les fondemens de la méthode des projections, pour la construction des cartes géographiques. Il a fait un Traité d'Optique dans lequel îl expose avec étendue le phénomène des réfractions astronomiques : il est encore auteur de divers ouvrages sur la musique, la chronologie, la gnomonique et la mécanique. Tant de travaux sur un si grand nombre d'objets, supposent

un esprit vaste, et lui assurent un rang distingué dans l'histoire des -sciences. Quand son système eut fait place à celui de la nature : on se vengea sur son auteur, du despotisme avec lequel il avait régné trop long-temps: on accusa Ptolémée de s'être approprié les découvertes de ses prédécesseurs. Mais la manière honorable dont il cite très-souvent Hipparque à l'appui de ses théories, le justifie pleinement de cette inculpation. A la renaissance des lettres parmi les Arabes et en Europe, ses hypothèses réunissant à l'attrait de la nouveauté, l'autorité de ce qui est ancien, furent généralement adoptées par les esprits avides de connaissances, et qui se virent tout-à-coup en possession de celles que l'antiquité n'avait acquises que par de longs travaux. Leur reconnaissance éleva trop haut Ptolémée qu'ensuite on a trop rabaissé. Sa réputation a éprouvé le même sort que celle d'Aristote et de Descartes : leurs erreurs n'ont pas été plutôt reconnues, que l'on a passé d'une admiration aveugle, à un injuste mépris; car dans les sciences mêmes, les révolutions les plus utiles n'ont point été exemptes de passion et d'injustice.

CHAPITRE III.

De l'Astronomie depuis Ptolémée, jusqu'à son renouvellement en Europe.

Aux travaux de Ptolémée, se terminent les progrès de l'Astronomie dans l'école d'Alexandrie. Cette école subsista pendant cinq siècles encore; mais les successeurs d'Hipparque et de Ptolémée, se bornérent à commenter leurs ouvrages, sans ajouter à leurs découvertes; et les phénomènes que le ciel offrit dans un intervalle de plus de six cents ans, manquèrent presque tous, d'observateurs. Rome pendant long-tems le séjour des vertus, de la gloire et des lettres, ne fit rien d'utile aux sciences. La considération attachée dans cette république, à l'éloquence et aux talens militaires, entraîna tous les esprits: les sciences qui n'y présentaient aucun avantage, dûrent être négligées au milieu des conquêtes que son ambition lui fit entreprendre, et des troubles intérieurs qui l'agitérent, et qui toujours croissant, produisirent enfin les guerres civiles dans lesquelles son inquiète liberté expira pour faire place au despotisme souvent orageux de ses Empereurs. Le déchirement de l'empire, suite inévitable de sa trop vaste étendue, amena sa décadence; et le flambeau des sciences éteint par les irruptions des barbares, ne se ralluma que chez les Arabes.

Ce peuple exalté par le fanatisme, après avoir étendu sa religion et ses armes sur une grande partie de la terre, se fut à peine reposé dans la paix; qu'il se livra aux sciences et aux lettres avec ardeur. Peu de temps auparavant, il en avait détruit le plus beau monument, en réduisant en cendres, la fameuse bibliothèque d'Alexandrie. En vain le philosophe Philoponus demanda avec instance, qu'elle fût conservée: Si ces livres, répondit Omar, sont

conformes à l'Alcoran, ils sont inutiles: ils sont détestables, s'ils lui sont contraires. Ainsi périt ce trésor immense de l'érudition et du génie. Bientôt, le repentir et les regrets suivirent cette exécution barbare; et les Arabes ne tardèrent pas à sentir que par cette perte irréparable, ils s'étnient privés du fruit le plus précieux de leurs conquêtes.

Vers le milieu du huitième siècle, le calife Almansor encouragea d'une manière spéciale, l'Astronomie. Mais parmi les princes arabes que distingua leur amour pour les sciences, l'histoire cite principalement Ahnamon, de la famille des Abassides et fils du fameux Aaron-al-Reschid. Almamon régnait à Bagdad en: 814. Vainqueur de l'Empereur grec Michel III, il imposa pour une des conditions de la paix, qu'on loi fournirait les meilleurs livres de la Grèce: l'Almageste fut de ce nombre: il le fit traduire et répandit ainsi parmi les Arabes, les connaissances astronomiques qui avaient illustré l'école d'Alexandrie. H fit plus encore; il voulet les perfectionner, et pour cet objet, il rassembla plusieurs Astronomes distingués qui après avoir fait un grand nombre d'observations, publièrent de nouvelles Tables du Soleil et de la Lune, plus parfaites que celles de Ptolémée, et long-temps célèbres dans l'Orient, sous le nom de Table vérifiée. Dans cette Table, le périgée solaire a la position qu'il devait avoir : l'équation du centre du soleil, beaucoup trop grande dans Hipparque, est réduite à sa véritable. valeur; mais cette précision devenait alors une source d'erreurs dans le calcul des éclipses où l'équation annuelle de la lune, corrigeait en partie, l'inexactitude de l'équation du centre du soleil, adoptée par cet Astronome. Le durée de l'année tropique est plus exacte que celle d'Hipparque: elle est cependant trop, courte d'environ deux minutes; mais cette erreur vient de ce que les auteurs de la Table vérifiée, comparèrent leurs, observations à celles de Ptolémée: elle aurait été presque nulle, s'ils eussent, employé les observations d'Hipparque. C'est encore par cette raison, qu'ils supposèrent la précession des équinoxes, un peu trop grande.

Almamon fit mesurer avec un grand soin, dans une vaste plaine de la Mésopotamie, un degré terrestre que l'on trouva de deux cent mille cinq cents coudées noires. Cette mesure offic la même incertitude que celle d'Ératosthène, relativement à la longueur du module dont on fit usage. Toutes ces mesures ne peuvent maintenant nous intéresser, qu'en faisant connaître ces modules. Mais les erreurs dont ces opérations étaient alors susceptibles, ne permettent pas d'en retirer cet avantage qui ne peut résulter que de la précision des opérations modernes au moyen desquelles on pourra toujours retrouver nos mesures, si par la suite des temps, leurs étalons viennent à s'altérer.

Les encouragemens donnés à l'Astronomie, par Almamon et par ses successeurs, produisirent un grand nombre d'Astronomes arabes très-recommandables, parmi lesquels Albatenius occupe une place distinguée. Son Traité de la Science des Étoiles, contient plusieurs observations intéressantes, et les principaux élémens des théories du soleil et de la lune : ils différent très-peu de ceux des Astronomes d'Almamon. Son ouvrage ayant été pendant longtemps, le seul traité connu de l'Astronomie arabe; on lui attribua les changemens avantageux qu'il apportait aux élémens des Tables de Ptolémée. Mais un fragment précieux extrait de l'Astronomie d'Ebn-Junis, et traduit par Caussin, nous a fait connaître que ces changemens sont dus aux auteurs de la Table vérifiée. Il nous a de plus, donné sur l'Astronomie arabe, des notions précises et fort étendues. Ebn - Junis, astronome du calife d'Egypte, Hakem, observait au Caire vers l'an mil. Il rédigea un grand traité d'Astronomie, et il construisit des Tables des mouvemens célestes, célèbres dans l'Orient par leur exactitude, et qui paraissent avoir servi de fondement aux Tables formées depuis par les Arabes et les Perses. On voit dans ce fragment, depuis le siècle d'Almansor jusqu'au temps d'Ehn-Junis, une longue suite d'observations d'éclipses, d'équinoxes, de solstices, de conjonctions de planètes et d'occultations d'étoiles, observations importantes pour la perfection des théories astronomiques, qui ont fait reconnaître l'équation séculaire de la lune, et répandu beaucoup de lumière sur les grandes variations du système du Monde. (Note V.) Ces observations ne sont encore qu'une faible partie de celles des Astronomes arabes dont le nombre a été prodigieux. Ils étaient parvenus à reconnaître l'inexactitude des observations de Ptolémée sur les équinoxes; et

en comparant leurs observations, soit entre elles, soit avec celles d'Hipparque, ils avaient fixé avec une grande précision, la longueur de l'année : celle d'Ebn-Junis n'excède pas de treize secondes, la nôtre qu'elle devait surpasser de cinq secondes. Il paraît par son ouvrage et par les titres de plusieurs manuscrits existans dans nos bibliothèques, que les Arabes s'étaient spécialement occupés de la perfection des instrumens astronomiques : les traités qu'ils ont laissés sur cet objet, prouvent l'importance qu'ils y attachaient, et cette importance garantit la justesse de leurs observations. Ils donnérent encore une attention particulière à la mesure du temps, par des clepsidres, par d'immenses cadrans solaires, et même par les vibrations du pendule. Malgré cela, leurs observations d'éclipses présentent presque autant d'incertitude, que celles des Chaldéens et des Grecs; et leurs observations du soleil et de la lune, sont loin d'avoir sur celles d'Hipparque, une supériorité qui puisse compenser l'avantage de la distance qui nous sépare de ce grand observateur. L'activité des Astronomes arabes s'est bornée aux observations: elle ne s'est point étendue à la recherche de nouvelles inégalités; et sur ce point, ils n'ont rien ajouté aux hypothèses de Ptolémée. Cette vive curiosité qui nous attache aux phénomènes, jusqu'à ce que les lois et la cause en soient parfaitement connues, est ce qui caractérise les savans de l'Europe moderne. (Note V.)

Les Perses soumis long-temps aux mêmes souverains que les Arabes, et professant la même religion, secouèrent vers le milieu du onzième siècle, le joug des Califes. A cette époque, leur calendrier reçut par les soins de l'astronome Omar-Cheyan, une forme nouvelle fondée sur l'intercalation ingénieuse de huit années bissextiles en trente-trois ans, intercalation que Dominique Cassini, à la fin de l'avant-dernier siècle, proposa comme plus exacte et plus simple que l'intercalation grégorienne; ignorant que les Perses en avaient depuis long-temps fait usage. Dans le treizième siècle, Holagu-Ilecoukan, un de leurs souverains, rassembla les Astronomes les plus instruits, à Maragha où il fit construire un magnifique observatoire dont il confia la direction à Nassiredin. Mais aucun prince de cette nation ne se distingua plus par son zèle pour l'Astronomie, qu'Ulugh-Beigh que l'on doit mettre au rang des plus

grands observateurs. Il dressa lui-même à Samarcande, capitale de ses états, un nouveau catalogue d'étoiles, et les meilleures Tables astronomiques que l'on ait eues avant Ticho-Brahé. Il mesura en 1457, avec un grand instrument, l'obliquité de l'écliptique; et son résultat corrigé de la réfraction et de la fausse parallaxe qu'il avait employée, donne cette obliquité plus grande de sept minutes, qu'au commencement de ce siècle; ce qui confirme sa diminution successive.

Les annales de la Chine nous ont offert les plus anciennes observations astronomiques : elles nous présentent encore vingtquatre siècles après, les observations les plus précises que l'on ait faites avant le renouvellement de l'Astronomie, et même avant l'application du télescope au quart de cercle. On a vu que l'année astronomique des Chinois, commençait au solstice d'hiver; et que pour en fixer l'origine, on observa dans tous les temps, les ombres méridiennes du gnomon vers les solstices. Gaubil, l'un des plus savans et des plus judicieux missionnaires Jésuites envoyés dans cet empire, nous a fait connaître une suite d'observations de ce genre, qui s'étendent depuis l'an 1100 avant notre ère, jusqu'en 1280 après. Elles indiquent avec évidence, la diminution de l'obliquité de l'écliptique qui dans ce long intervalle, a été de deux cinquièmes de degré. Tsou-tchong, l'un des plus habiles astronomes chinois, en comparant les observations qu'il fit à Nankin en 461, avec celles que l'on avait faites à Loyang, dans l'année 173, détermina la grandeur de l'année tropique, plus exactement que ne l'avaient fait, les Grecs et même les Astronomes d'Almamon: il la trouva de 365, 24282, la même à très-peu près que celle de Copernic. Pendant qu'Holagu-Ilecoukan faisait fleurir l'Astronomie en Perse; son frère Cobilai, fondateur en 1271, de la dynastie des Yven, lui accordait la même protection à la Chine: il nomma chef du tribunal des mathématiques, Cocheou-King, le premier des astronomes chinois. Ce grand observateur fit construire des instrumens beaucoup plus exacts que ceux dont on avait fait usage jusqu'alors: le plus précieux de tous était un gnomon de quarante pieds chinois, terminé par une plaque de cuivre, verticale et percée par un trou du diamètre d'une aiguille. C'est du centre de cette

ouverture, que Cocheou-King comptait la hauteur du gnomon: il mesurait l'ombre, jusqu'au centre de l'image du soleil. « Jusqu'ici. » dit-il, on n'observait que le bord supérieur du soleil, et l'on » avait de la peine à distinguer le terme de l'ombre : d'ailleurs, le n gnomon de huit pieds dont on s'est constamment servi, est » trop court. Ces motifs m'ont porté à faire usage d'un gnomon » de quarante pieds, et à prendre le centre de l'image. » Gaubil dont nous tenons ces détails, nous a communiqué plusieurs de ces observations faites depuis 1277 jusqu'en 1280: elles sont précieuses par leur exactitude, et prouvent d'une manière incontestable, les diminutions de l'obliquité de l'écliptique, et de l'excentricité de l'orbe terrestre, depuis cette époque jusqu'à nos jours. Cocheou-King détermina avec une précision remarquable, la position du solstice d'hiver par rapport aux étoiles en 1280 : il le faisait coïncider avec l'apogée du soleil; ce qui avait eu lieu trente ans auparavant: la grandeur qu'il supposait à l'année, est exactement celle de notre année grégorienne. Les méthodes chinoises pour le calcul des éclipses, sont inférieures à celles des Arabes et des Perses: les Chinois n'ont point profité des connaissances acquises par ces peuples, malgré leurs communications fréquentes avec eux; ils ont étendu à l'Astronomie elle-même, l'attachement constant qu'ils portent à leurs anciens usages. (Note VI.)

L'histoire de l'Amérique, avant sa conquête par les Espagnols, nous offre quelques vestiges d'Astronomie; car les notions les plus élémentaires de cette science, ont été chez tous les peuples, les premiers fruits de leur civilisation. Les Mexicains avaient au lieu de la semaine, une petite période de cinq jours: leurs mois étaient chacun de vingt jours, et dix-huit de ces mois formaient leur année qui commençait au solstice d'hiver, et à laquelle ils ajoutaient cinq jours complémentaires. Il y a lieu de penser qu'ils composaient de la réunion de cent quatre ans, un grand cycle dans lequel ils intercalaient vingt-cinq jours. Cela suppose une durée de l'année tropique, plus exacte que celle d'Hipparque, et, ce qui est remarquable, elle est la même à très-peu près que l'année des Astronomes d'Almamon. Les Péruviens et les Mexicains observaient avec soin, les ombres du gnomon, aux solstices et aux équinoxes: ils avaient

même élevé pour cet objet, des colonnes et des pyramides. Cependant, quand on considère la difficulté de parvenir à une détermination aussi exacte de la longueur de l'année; on est porté à croire qu'elle n'est pas leur ouvrage, et qu'elle leur est venue de l'ancien continent. Mais de quel peuple et par quel moyen l'ont-ils reçue? Pourquoi, si elle leur a été transmise par le nord de l'Asie, ont-ils une division du temps, si différente de celles qui ont été en usage dans cette partie du monde? ce sont des questions qu'il paraît impossible de résoudre.

Il existe dans les nombreux manuscrits que renferment nos bibliothèques, beaucoup d'observations anciennes encore inconnues, qui répandraient un grand jour sur l'Astronomie, et spécialement sur les inégalités séculaires des mouvemens célestes. Leur recherche doit fixer l'attention des savans versés dans les langues orientales; car les grandes variations du système du monde, ne sont pas moins intéressantes à connaître, que les révolutions des empires. La postérité qui pourra comparer une longue suite d'observations très-exactes, à la théorie de la pesanteur universelle, jouira du développement de ses résultats, beaucoup mieux que nous à qui l'antiquité n'a laissé que des observations le plus souvent incertaines. Mais ces observations soumises à une saine critique, peuvent, du moins en partie, compenser par leur nombre, les erreurs dont elles sont susceptibles, et nous tenir lieu d'observations précises; de même qu'en géographie, pour fixer la position des lieux, on supplée les observations astronomiques, en comparant entre elles les diverses relations des voyageurs. Ainsi, quoique le tableau que nous offre la série des observations depuis les temps les plus anciens jusqu'à nos jours, soit fort imparfait; cependant on y voit d'une manière très-sensible, les variations de l'excentricité de l'orbe terrestre, et de la position de son périgée; celles des mouvemens séculaires de la lune, par rapport à ses nœuds, à son périgée et au soleil; enfin, les variations des élèmens des orbes planétaires. La diminution successive de l'obliquité de l'écliptique pendant près de trois mille ans, est surtout remarquable dans la comparaison des observations de Tcheou-Kong, de Pythéas, d'Ebn-Junis, de Cocheou-King, d'Ulugh-Beigh, et des modernes.

CHAPITRE IV.

De l'Astronomie dans l'Europe moderne.

C'est principalement aux Arabes, que l'Europe moderne doit les premiers rayons de lumière, qui ont dissipé les ténèbres dont elle a été enveloppée pendant plus de douze siècles. Ils nous ont transmis avec gloire, le dépôt des connaissances qu'ils avaient reçues des Grecs disciples eux-mêmes des Égyptiens. Mais par une fatalité déplorable, elles ont disparu chez tous ces peuples, à mesure qu'ils les ont communiquées. Depuis long-temps, le despotisme étendant sa barbarie sur les belles contrées qui furent le berceau des sciences et des arts, en a effacé jusqu'au souvenir des grands hommes qui les ont illustrées.

Alphonse, roi de Castille, fut un des premiers souverains qui encouragèrent l'Astronomie renaissante en Europe. Cette science compte peu de protecteurs aussi zélés; mais il fut mal secondé par les Astronomes qu'il avait réunis; et les Tables qu'ils publièrent, ne répondirent point aux dépenses excessives qu'elles avaient occasionnées. Doué d'un esprit juste, Alphonse était choqué de l'embarras des cercles et des épicycles dans lesquels on faisait mouvoir les corps célestes: si Dieu, disait-il, m'avait appelé à son conseil, les choses eussent été dans un meilleur ordre. Par ces mots qui furent taxés d'impiété, il faisait entendre que l'on était encore loin de connaître le mécasisme de l'univers. Au temps d'Alphonse, l'Europe dut aux encouragemens de Frédéric II, empereur d'Allemagne, la première traduction latine de l'Almageste de Ptolémée, que l'on fit sur la version arabe.

Nous arrivons enfin à l'époque où l'Astronomie sortant de la sphère étroite qui l'avait renfermée jusqu'alors, s'éleva par des

50

progrès rapides et continus, à la hauteur où nous la voyons. Purbach, Régiomontanus et Waltherus préparèrent ces beaux iours de la science, et Copernic les fit naître par l'explication heureuse des phénomènes célestes, au moyen des mouvemens de la terre, sur elle-même et autour du soleil. Choqué comme Alphonse, de l'extrême complication du système de Ptolémée, il chercha dans les anciens philosophes, une disposition plus simple de l'univers: il reconnut que plusieurs d'entre eux, avaient mis Vénus et Mercure. en mouvement autour du soleil; que Nicetas, au rapport de Cicéron. faisait tourner la terre sur son axe, et par ce moyen, affranchissait la sphère céleste, de l'inconcevable vitesse qu'il fallait lui supposer pour accomplir sa révolution diurne. Aristote et Plutarque lui apprirent que les Pythagoriciens faisaient mouvoir la terre et les planètes, autour du soleil qu'ils plaçaient au centre du monde. Ces idées lumineuses la frappèrent: il les appliqua aux observations astronomiques que le temps avait multipliées; et il eut la satisfaction de les voir se plier sans effort, à la théorie du mouvement de la terre. La révolution diurne du ciel ne fut qu'une illusion due à la rotation de la terre, et la précession des équinoxes se réduisit à un léger mouvement dans l'axe terrestre. Les cercles imaginés par Ptolémée, pour expliquer les mouvemens directs et rétrogrades des planètes, disparurent : Copernic ne vit dans ces singuliers phénomènes, que des apparences produites par la combinaison du mouvement de la terre autour du soleil, avec celui des planètes; et il en conclut les dimensions respectives de leurs orbes, jusqu'alors ignorées. Enfin, tout annonçait dans ce système, cette belle simplicité qui nous charme dans les moyens de la nature, quand nous sommes assez heureux pour les connaître. Copernic le publia dans son ouvrage sur les Révolutions célestes: pour ne pas révolter les préjugés reçus, il le présenta comme une hypothèse. « Les Astronomes, dit-il, dans sa dédicace au pape Paul III, s'étant » permis d'imaginer des cercles pour expliquer le mouvement des » astres; j'ai cru pouvoir également examiner si la supposition du » mouvement de la terre, rend plus exacte et plus simple, la » théorie de ces mouvemens »

Ce grand homme me fut pas témoin du succès de son ouvrage:

il mourut presque subitement, à l'age de soixante-onze ans, après en avoir reçu le premier exemplaire. Né à Thorn dans la Prusse polonaise, le 19 février 1473, il apprit dans la maison paternelle. les langues grecque et latine; et il alla continuer ses études à Cracovie. Ensuite entraîné par son goût pour l'Astronomie, et par la réputation que Régiomontanas avait laissée; le desir de s'illustrer dans la même carrière, lui fit entreprendre le voyage de l'Italie où cette science était enseignée avec succès. Il suivit à Bologne, les leçons de Dominique Maria: il obtint ensuite une place de professeur à Rome où il sit diverses observations: enfin, il quitta cette ville pour se fixer à Fravenberg où son oncle, alors évêque de Warmie, le pourvut d'un canonicat. Ce fut dans ce tranquille séjour, que par trente-six ans d'observations et de méditations, il établit sa théorie du mouvement de la terre. A sa mort, il fut inhumé dans la cathédrale de Fravenberg, sans pompe et sans épitaphe; mais sa mémoire subsistera aussi long-temps que les grandes vérités qu'il a reprodultes avec une évidence qui, enfin, a dissipé les illusions des sens, et surmonté les difficultés que leur opposait l'ignorance des lois de la mécanique.

Ces vérités eurent encore à vaincre des obstaeles d'un autre genre, et qui naissant d'un fonds respecté, les auraient étouffées; si les progrès rapides de toutes les sciences mathématiques n'eussent concouru à les affermir. La religion fut invoquée pour détruire un système astronomique, et l'on tourmenta par des persécutions réitérées, l'un de ses défenseurs, dont les découvertes honoraient l'Italie. Réthicus, disciple de Copernic, fut le premier qui en adopta les idées; mais elles ne prirent une grande faveur, que vers le commencement du dix-septième siècle; et elles la dûrent principalement aux travaux et aux malheurs de Galilée.

Un heureux hasard venait de faire trouver le plus merveilleux instrument que l'industrie humaine ait découvert, et qui en donnant aux observations astronomiques, une étendue et une précision inespérée, a fait apercevoir dans les cieux, des inégalités nouvelles et de nouveaux mondes. Galilée eut à peine connaissance des premiers essais sur le télescope, qu'il s'attacha à le perfectionner. En le dirigeant vers les aetres, il découvrit les quatre satellites de

Jupiter, qui lui montrerent une nouvelle analogie de la terre avec les planètes: il reconnut ensuite les phases de Vénus, et dès-lors, il ne douta plus de son mouvement autour du soleil. La voie lactée lui offrit un nombre infini de petites étoiles que l'irradiation confond à la vue simple, dans une lumière blanche et continue: les points lumineux qu'il aperçut au-delà de la ligne qui sépare la partie éclairée, de la partie obscure de la lune, lui firent connaître l'existence et la hauteur de ses montagnes. Enfin, il observa les taches et la rotation du soleil, et les apparences singulières occasionnées par l'anneau de Saturne. En publiant ces découvertes, il fit voir qu'elles démontraient le mouvement de la terre; mais la pensée de ce mouvement fut déclarée contraire aux dogmes religieux, par une congrégation de cardinaux; et Galilée, son plus célèbre défenseur en Italie, fut cité au tribunal de l'inquisition, et forcé de se rétracter, pour échapper à une prison rigoureuse.

Une des plus fortes passions est l'amour de la vérité dans l'homme de génie. Plein de l'enthousiasme qu'une grande découverte lui inspire, il brûle de la répandre; et les obstacles que lui opposent l'ignorance et la superstition armées du pouvoir, ne font que l'irriter et accroître son énergie. Galilée convaincu de plus en plus par ses observations, du mouvement de la terre, médita long-temps un nouvel ouvrage dans lequel il se proposait d'en développer les preuves. Mais pour se dérober à la persécution dont il avait failli être victime, il imagina de les présenter sous la forme de dialogues. entre trois interlocuteurs dont l'un défendait le système de Copernic. combattu par un péripatéticien. On sent que tout l'avantage restait au défenseur de ce système; mais Galilée ne pronongant point entre eux, et faisant valoir autant qu'il était possible, les objections des partisans de Ptolémée, devait s'attendre à jouir de la tranquillité que lui méritaient ses travaux et son grand âge. Le succès de ces dialogues, et la manière triomphante avec laquelle toutes les difficultés contre le mouvement de la terre, y étaient résolues, réveillèrent l'inquisition. Galilée à l'âge de soixante-dix ans, fut de nouveau cité à de tribunal. La protection du grand duc de Toscane ne put empêcher qu'il y comparût. On l'enferma dans une prison où l'on exigea de lui un second désayeu de ses sentimens, avec menace de

la peine de relaps, s'il continuait d'enseigner la même doctrine. On lui fit signer cette formule d'abjuration: Moi, Galilée, à la soixante-dixième année de mon âge, constitué personnellement en justice, étant à genoux, et ayant devant les yeux, les saints évangiles que je touche de mes propres mains; d'un cœur et d'une foi sincère, j'abjure, je maudis et je déteste l'erreur, l'hérésie du mouvement de la terre, etc. Quel spectacle, que celui d'un vieillard, illustre par une longue vie consacrée toute entière à l'étude de la nature, abjurant à genoux, contre le témoignage de sa propre conscience, la vérité qu'il avait prouvée avec évidence! Un décret de l'inquisition le condamna à une prison perpétuelle : il fut élargi, après une année, par les sollicitations du grand-duc; mais pour l'empêcher de se soustraire au pouvoir de l'inquisition, on lui défendit de sortir du territoire de Florence. Né à Pise en 1564, il annonça de bonne heure, les grands talens qu'il développa dans la suite. La mécanique lui doit plusieurs découvertes dont la plus importante est sa théorie de la chute des graves. Galilée était occupé de la libration de la lune, lorsqu'il perdit la vue : trois ans après, il mourut à Arcetri, en 1642, emportant avec lui, les regrets de l'Europe éclairée par ses travaux, et indignée du jugement porté contre un si grand homme, par un odieux tribunal.

Pendant que ces choses se passaient en Italie; Kepler dévoi'ait en Allemagne, les lois des mouvemens planétaires. Mais avant que d'exposer ses découvertes, il convient de remonter plus haut, et de faire connaître les progrès de l'Astronomie dans le nord de l'Europe, depuis la mort de Copernic.

L'histoire de cette science nous offre à cette époque, un grand nombre d'excellens observateurs. L'un des plus illustres, fut Guillaume IV, landgrave de Hesse-Cassel. Il fit bâtir à Cassel, un observatoire qu'il munit d'instrumens travaillés avec soin, et avec lesquels il observa long-temps lui-même. Il s'attacha deux Astronomes distingués, Rothman et Juste Byrge; et Ticho fut redevable à ses pressantes sollicitations, des avantages que lui procura Frédéric, roi de Danemarck.

Ticho-Brahé, l'un des plus grands observateurs qui aient existé, naquit à Knudsturp en Norwège. Son goût pour l'Astronomie se

manifesta des l'âge de quatorze ans, à l'occasion d'une éclipse arrivée en 1560. A cet âge où il est si rare de réfléchir, la justesse du calcul par lequel on avait prédit-ce phénomène, lui inspira le vif desir d'en connaître les principes; et ce desir s'accrut encore par les oppositions qu'il éprouva de la part de son gouverneur et de sa famille. Il voyagea en Allemagne où il contracta des liaisons de correspondance et d'amitié avec les savans et les amateurs les plus distingués de l'Astronomie, et particulièrement avec le landgrave de Hesse-Cassel, qui le recut de la manière la plus flatteuse. De retour dans sa patrie, il y fut fixé par Frédéric son souverain, qui lui donna la petite île d'Huène, à l'entrée de la mer Baltique. Ticho y fit bâtir un observatoire célèbre sous le nom d'Uranibourg: là. pendant un séjour de vingt-un ans, il fit un nombre prodigieux d'observations, et plusieurs découvertes importantes. A la mort de Frédéric, l'envie déchaînée contre Ticho, le força d'abandonner sa retraite. Son retour à Copenhague n'assouvit point la rage de ses persécuteurs : un ministre (son nom comme celui de tous les. hommes qui ont abusé du pouvoir pour arrêter les progrès de la raison, doit être livré au mépris de tous les âges), Walchendorp lui fit défendre de continuer ses observations. Heureusement, Ticho retrouva un protecteur puissant dans l'empereur Rodolphe II, qui se l'attacha par une pension considérable, et lui donna un observatoire à Prague. Une mort imprévue l'enleva dans cette ville, le 24 octobre 1601, au milieu de ses travaux, et dans un âge où il pouvait encore rendre à l'Astronomie de grands services.

De nouveaux instrumens inventés, et des perfections nouvelles ajoutées aux anciens; une précision beaucoup plus grande dans les observations; un catalogue d'étoiles, fort supérieur à ceux d'Hipparque et d'Ulug-Beigh; la découverte de l'inégalité de la lune, qu'il nomma variation; celle des inégalités du mouvement des nœuds et de l'inclinaison de l'orbe lunaire; la remarque importante que les comètes se meuvent fort au-delà de cet orbe; une connaissance plus parfaite des réfractions astronomiques; enfin des observations très-nombreuses des planètes, qui ont servi de base aux lois de Kepler; tels sont les principaux services que Ticho-Brahé

a rendus à l'Astronomie. L'exactitude de ses observations à laquelle il fut redevable de ses découvertes sur le mouvement lunaire, lui fit connaître encore, que l'équation du temps, relative au soleil et aux planètes, n'était point applicable à la lune, et qu'il fallait en retrancher la partie dépendante de l'anomalie du soleil, et même une quantité beaucoup plus grande. Kepler porté par son imagination. à rechercher les rapports et la cause des phénomènes, pensa que la vertu motrice du soleil, faisait tourner la terre plus rapidement sur elle-même, dans son périhélie que dans son aphélie. L'effet de cette variation du mouvement diurne ne pouvait être reconnu par les observations de Ticho, que dans le mouvement de la lune, où il est treize fois plus considérable que dans celui du soleil. Mais les horloges perfectionnées par l'application du pendule, ayant fait voir que cet effet est nul dans ce dernier mouvement, et que la rotation de la terre est uniforme; Flamsteed transporta à la lune elle-même, l'inégalité dépendante de l'anomalie du soleil, et que l'on avait regardée comme apparente. Cette inégalité dont on doit à Ticho le premier aperçu, est celle que l'on nomme équation annuelle. On voit par cet exemple, comment l'observation, en se perfectionnant, nous découvre des inégalités jusqu'alors enveloppées dans ses erreurs. Les recherches de Kepler en offrent un exemple encore plus remarquable. Ayant fait voir dans son Commentaire sur Mars, que les hypothèses de Ptolémée s'écartaient nécessairement des observations de Ticho, de huit minutes sexagésimales, il ajoute : « Cette différence est plus petite que l'incertitude des » observations de Ptolémée, incertitude qui, de l'aveu de cet » Astronome, était au moins de dix minutes. Mais la bonté divine » nous ayant fait présent dans Ticho-Brahé, d'un très-exact observateur; il est juste de reconnaître ce bienfait de la Divinité, et de » lui en rendre graces. Convaincus maintenant de l'erreur des hypo-» thèses dont nous venons de faire usage, nous devons employer » tous nos efforts pour découvrir les lois véritables des mouvemens » célestes. Ces huit minutes qu'il n'est plus permis de négliger, » m'ont mis sur la voie pour réformer toute l'Astronomie, et sont » la matière de la plus grande partie de cet ouvrage. » Frappé des objections que les adversaires de Copernic opposaient

au mouvement de la terre, et peut-être entraîné par la vanité de donner son nom à un système astronomique, Ticho-Brahé méconnut celui de la nature. Suivant lui, la terre est immobile au centre de l'univers: tous les astres se meuvent, chaque jour, autour de l'axe du monde; et le soleil, dans sa révolution annuelle, emporte avec lui, les planètes. Dans ce système qui, selon l'ordre naturel des idées, aurait dû précéder celui de Copernic, les apparences sont les mêmes que dans la théorie du mouvement de la terre. On peut généralement considérer tel point que l'on veut, par exemple, le centre de la lune, comme immobile; pourvu que l'on transporte en sens contraire, à tous les astres, le mouvement dont il est animé. Mais n'est-il pas physiquement absurde de supposer la terre sans mouvement dans l'espace, tandis que le soleil entraîne les planètes au milieu desquelles elle est comprise? La distance de la terre au soleil, si bien d'accord avec la durée de sa révolution, dans l'hypothèse de son mouvement, pouvait-elle laisser des doutes à un esprit fait pour sentir la force de l'analogie; et ne doit-on pas dire avec Kepler, que la nature proclame ici, d'une voix haute, la vérité de cette hypothèse? Il faut l'avouer, Ticho, quoique grand observateur, ne fut pas heureux dans la recherche des causes : son esprit peu philosophique fut même imbu des préjugés de l'Astrologie judiciaire qu'il a essayé de défendre. Il serait cependant injuste de le juger avec la même rigueur, que celui qui se refuserait, de nos jours, à la théorie du mouvement de la terre, confirmée par les nombreuses découvertes faites depuis, en Astronomie. Les difficultés que les illusions des sens opposaient alors à cette théorie, n'avaient point encore été résolues. Le diamètre apparent des étoiles, supérieur à leur parallaxe annuelle, donnait à ces astres, dans cette théorie, un diamètre réel plus grand que celui de l'orbe terrestre: le télescope, en les réduisant à des points lumineux, a fait disparaître cette grandeur invraisemblable. On ne concevait pas comment les corps détachés de la terre, pouvaient en suivre les mouvemens. Les lois de la mécanique ont expliqué ces apparences: elles ont fait voir, ce que Ticho trompé par une expérience fautive, refusait d'admettre, qu'un corps en partant d'une grande hauteur, et abandonné à la seule action de la gravité, retombe à très-peu

près au pied de la verticale, en ne s'écartant à l'orient, que d'une quantité très-difficile à observer à cause de son extrême petitesse; ensorte que l'on éprouve maintenant, à reconnaître dans la chute des graves, le mouvement de la terre, autant de difficulté, que l'on en trouvait alors, à prouver qu'il y doit être insensible.

Dans ses dernières années, Ticho-Brahé eut pour disciple et pour aide, Kepler né en 1571 à Viel dans le duché de Wirtemberg, et l'un de ces hommes rares que la nature donne de temps en temps aux sciences, pour en faire éclore les grandes théories préparées par les travaux de plusieurs siècles. La carrière des sciences lui parut d'abord peu propre à satisfaire l'ambition qu'il avait de s'illustrer; mais l'ascendant de son génie, et les exhortations de Mœstlin, le rappelèrent à l'Astronomie, et il y porta toute l'activité

d'une ame passionnée pour la gloire.

Impatient de connaître la cause des phénomènes, le savant doué d'une imagination vive, l'entrevoit souvent avant que les observations aient pu l'y conduire. Sans doute, il est plus sûr de remonter des phénomènes aux causes; mais l'histoire des sciences nous montre que cette marche lente et pénible n'a pas toujours été celle des inventeurs. Que d'écueils doit craindre celui qui prend son imagination pour guide! Prévenu pour la cause qu'elle lui présente, loin de la rejeter lorsque les faits lui sont contraires, il les altère pour les plier à ses hypothèses : il mutile, si je puis ainsi dire, l'ouvrage de la nature, pour le faire ressembler à celui de son imagination, sans réfléchir que le temps dissipe ces vains fantômes, et consolide les résultats de l'observation et du calcul. Le philosophe vraiment utile aux progres des sciences, est celui qui réunissant à une imagination profonde, une grande sévérité dans le raisonnement et les expériences, est à-la-fois tourmenté par le desir de s'élever aux causes des phénomènes, et par la crainte de se tromper sur celles qu'il leur assigne.

Kepler dut à la nature, le premier de ces avantages; et Ticho-Brahé lui donna pour obtenir le second, d'utiles conseils dont il s'est trop souvent écarté. Ce grand observateur qu'il alla voir à Prague, et qui dans les premiers ouvrages de Kepler, avait démêlé son génie, à travers les analogies mystérieuses des figures

et des nombres, dont ils étaient pleins, l'exhorta à observer, et lui procura le titre de mathématicien impérial. La mort de Ticho, arrivée peu d'années après, mit Kepler en possession de la collection précieuse de ses observations; et il en fit l'emploi le plus utile, en fondant sur elles, trois des plus importantes découvertes que l'on ait faites dans la philosophie naturelle.

Ce fut une opposition de Mars, qui détermina Kepler à s'occuper de préférence, des mouvemens de cette planète. Son choix sut heureux, en ce que l'orbe de Mars étant un des plus excentriques du système planétaire, et la planète approchant fort près de la terre, dans ses oppositions; les inégalités de son mouvement sont plus sensibles, et doivent plus facilement et plus sûrement en faire découvrir les lois. Quoique la théorie du mouvement de la terre eût fait disparaître la plupart des cercles dont Ptolémée avait embarrassé l'Astronomie; cependant Copernic en avait laissé subsister plusieurs, pour expliquer les inégalités réelles des corps célestes. Kepler trompé comme lui, par l'opinion que leurs mouvemens devaient être circulaires, essaya long-temps de représenter ceux de Mars, dans cette hypothèse. Enfin, après un grand nombre de tentatives qu'il a rapportées en détail dans son fameux ouvrage De stella Martis, il franchit l'obstacle que lui opposait une erreur accréditée par le suffrage de tous les siècles : il reconnut que l'orbe de Mars est une ellipse dont le soleil occupe un des foyers, et que la planète s'y meut de manière que le rayon vecteur mené de son centre à celui du soleil, décrit des aires proportionnelles au temps. Kepler étendit ces résultats à toutes les planètes, et il publia en 1626, d'après cette théorie, les Tables Rudolphines, à jamais mémorables en Astronomie, comme ayant été les premières fondées sur les véritables lois des mouvemens planétaires.

Si l'on sépare des recherches astronomiques de Kepler, les idées chimériques dont il les a trop souvent accompagnées; on voit qu'il parvint à ces lois, de la manière suivante. Il s'assura d'abord que l'égalité du mouvement angulaire de Mars, n'avait lieu sensiblement qu'autour d'un point situé au-delà du centre de son orbite, par rapport au soleil. Il reconnut la même chose pour la terre, en comparant entre elles des observations choisies de Mars dont

l'orbe, par la grandeur de sa parallaxe annuelle, est propre à faire connaître les dimensions respectives de l'orbe terrestre. Kepler conclut de ces résultats, que les mouvemens réels des planètes sont variables, et qu'aux deux points de la plus grande et de la plus petite vîtesse, les aires décrites dans un jour par le rayon vecteur d'une planète, autour du soleil, sont les mêmes. Il étendit cette égalité des aires, à tous les points de l'orbite; ce qui lui donna la loi des aires proportionnelles aux temps. Ensuite, les observations de Mars vers ses quadratures lui firent connaître que l'orbe de cette planète, est un ovale alongé dans le sens du diamètre qui joint les points des vîtesses extrêmes; ce qui le conduisit enfin, au mouvement elliptique.

Sans les spéculations des Grecs sur les courbes que forme la section du cône par un plan, ces belles lois seraient peut-être encore ignorées. L'ellipse étant une de ces courbes, sa figure oblongue fit naître dans l'esprit de Kepler, la pensée d'y mettre en mouvement, la planète Mars; et bientôt, au moyen des nombreuses propriétés que les anciens Géomètres avaient trouvées sur les sections coniques, il s'assura de la vérité de cette hypothèse. L'histoire des sciences nous offre beaucoup d'exemples de ces applications de la Géomètrie pure, et de ses avantages; car tout se tient dans la chaîne immense des vérités, et souvent une seule observation a suffi pour féconder les plus stériles en apparence, en les transportant à la nature dont les phénomènes ne sont que les résultats mathématiques d'un petit nombre de lois immuables.

Le sentiment de cette vérité donna probablement naissance aux analogies mystérieuses des Pythagoriciens: elles avaient séduit Kepler, et il leur fut redevable d'une de ses plus belles découvertes. Persuadé que les distances moyennes des planètes au soleil et leurs révolutions devaient être réglées conformément à ces analogies, il les compara long-temps, soit avec les corps réguliers de la Géométrie, soit avec les intervalles des tons. Enfin après dix-sept ans d'essais inutiles, ayant eu l'idée de comparer les puissances des distances, avec celles des temps des révolutions sidérales; il trouva que les carrés de ces temps sont entre eux, comme les cubes des grands axes des orbites; loi très-importante, qu'il eut l'ayantage

de reconnaître dans le système des satellites de Jupiter, et qui s'étend à tous les systèmes de satellites.

Après avoir déterminé la courbe que les planètes décrivent antour du soleil, et découvert les lois de leurs mouvemens; Kepler était trop près du principe dont ces lois dérivent, pour ne pas le pressentir. La recherche de ce principe exerça souvent son imagination active; mais le moment n'était pas venu, de faire ce dernier pas qui supposait l'invention de la dynamique et de l'analyse infinitésimale. Loin d'approcher du but, Kepler s'en écarta par de vaines spéculations sur la cause motrice des planètes. Il supposait au soleil, un mouvement de rotation sur un axe perpendiculaire à l'écliptique : des espèces immatérielles émanées de cet astre dans le plan de son équateur, douées d'une activité décroissante en raison des distances, et conservant leur mouvement primitif de révolution, faisaient participer chaque planète, à ce mouvement circulaire. En même temps, la planète par une sorte d'instinct ou de magnétisme, s'approchait et s'éloignait alternativement du soleil, s'élevait au-dessus de l'équateur solaire, et s'abaissait au-dessous, de manière à décrire une ellipse toujours située dans un même plan passant par le centre du soleil. Au milieu de ces nombreux écarts, Kepler fut cependant conduit à des vues saines sur la gravitation universelle, dans l'introduction de l'ouvrage De stella Martis, où il présenta ses principales découvertes.

« La gravité, dit-il, n'est qu'une affection corporelle et mutuelle

» entre les corps, par laquelle ils tendent à s'unir.

» La pesanteur des corps n'est point dirigée vers le centre du » monde, mais vers celui du corps rond dont ils font partie; et si la » terre n'était point sphérique, les graves placés sur les divers points

» de sa surface, ne tomberaient point vers un même centre.

» Deux corps isolés se porteraient l'un vers l'autre, comme » deux aimans, en parcourant pour se joindre, des espaces réci-» proques à leurs masses. Si la terre et la lune n'étaient pas retenues » à la distance qui les sépare, par une force animale, ou par » quelque autre force équivalente, elles tomberaient l'une sur » l'autre, la lune faisant les 53 du chemin, et la terre faisant le reste,

» en les supposant également denses.

» Si la terre cessait d'attirer les eaux de l'Océan, elles se porteraient sur la lune, en vertu de la force attractive de cet astre.

» Cette force qui s'étend jusqu'à la terre, y produit les phéno-» mènes du flux et du reflux de la mer. » Ainsi l'important ouvrage, que nous venons de citer, contient les premiers germes de la mécanique céleste, que Newton et ses successeurs ont si heureu-

sement développés.

On doit être étonné que Kepler n'ait pas appliqué aux comètes, les lois du mouvement elliptique. Mais égaré par une imagination ardente, il laissa échapper le fil de l'analogie, qui devait le conduire à cette grande découverte. Les comètes, suivant lui, n'étant que des météores engendrés dans l'éther; il négligea d'étudier leurs mouvemens, et il s'arrêta au milieu de la carrière qu'il avait ouverte, laissant à ses successeurs, une partie de la gloire qu'il pouvoit encore acquérir. De son temps, on commençait à peine à entrevoir la méthode de procéder dans la recherche de la vérité à laquelle le génie ne parvenait que par instinct, et en y mêlant souvent beaucoup d'erreurs. Au lieu de s'élever péniblement par une suite d'inductions, des phénomènes particuliers à d'autres plus étendus, et de ceux-ci, aux lois générales de la nature : il était plus agréable et plus facile de subordonner tous les phénomènes. à des rapports de convenance et d'harmonie, que l'imagination créait et modifiait à son gré. Ainsi Kepler expliqua la disposition du système solaire, par les lois de l'harmonie musicale. Il est affligeant pour l'esprit humain, de voir ce grand homme, même dans ses derniers ouvrages, se complaire avec délices dans ces chimériques spéculations, et les regarder comme l'ame et la vie de l'Astronomie. Leur mélange avec ses véritables découvertes, fut sans doute, la cause pour laquelle les Astronomes de son temps, Descartes lui-même et Galilée, qui pouvaient tirer le parti le plus avantageux de ses lois, ne paraissent pas en avoir senti l'importance. Elles n'ont été généralement admises, qu'après que Newton en eut fait la base de sa théorie du système du monde.

L'Astronomie doit encore à Kepler, plusieurs travaux utiles : ses ouvrages sur l'optique sont pleins de choses neuves et intéressantes. Il y perfectionne le télescope et sa théorie : il y explique le

mécanisme de la vision, inconnu avant lui: il y donne la vraie cause de la lumière cendrée de la lune; mais il en fait hommage à son maître Mœstlin, recommandable par cette découverte et pour avoir rappelé Kepler à l'Astronomie, et converti Galilée au système de Copernic. Enfin Kepler, dans son ouvrage intitulé: Stereometria doliorum, présente sur l'infini, des vues qui ont influé sur la révolution que la Géométrie a éprouvée à la fin de l'avant-dernier siècle; et Fermat que l'on doit regarder comme le véritable inventeur du calcul différentiel, a fondé sur elles, sa belle méthode de maximis et minimis.

Avec autant de droits à l'admiration, ce grand homme vécut dans la misère, tandis que l'Astrologie judiciaire partout en honneur. était magnifiquement récompensée. Heureusement, la jouissance de la vérité qui se dévoile à l'homme de génie, et la perspective de la postérité juste et reconnaissante, le consolent de l'ingratitude de ses contemporains. Kepler avait obtenu des pensions qui lui furent toujours mal payées. Étant allé à la diète de Ratisbonne, pour en solliciter les arrérages, il mourut dans cette ville, le 15 novembre 1630. Il eut dans ses dernières années, l'avantage de voir naître et d'employer la découverte des logarithmes, due à Neper, baron écossais; artifice admirable ajouté à l'ingénieux algorithme des Indiens, et qui en réduisant à quelques jours, le travail de plusieurs mois, double, si l'on peut ainsi dire, la vie des Astronomes, et leur épargne les erreurs et les dégoûts inséparables des longs calculs; invention d'autant plus satisfaisante pour l'esprit humain, qu'il l'a tirée en entier de son propre fonds: dans les arts, l'homme se sert des matériaux et des forces de la nature, pour accroître sa puissance; mais ici, tout est son ouvrage.

Les travaux d'Huyghens suivirent de près, ceux de Kepler et de Galilée. Très-peu d'hommes ont aussi bien mérité des sciences, par l'importance et la sublimité de leurs recherches. L'application du pendule aux horloges, est un des plus beaux présens que l'on ait faits à l'Astronomie et à la Géographie, qui sont redevables de leurs progrès rapides, à cette heureuse invention et à celle du télescope dont il perfectionna considérablement la pratique et la théorie. Il reconnut au moyen des excellens objectifs qu'il parvint

à construire, que les singulières apparences de Saturne, sont produites par un anneau fort mince dont cette planète est entourée. Son assiduité à les observer, lui fit découvrir un des satellites de Saturne. Il publia ces deux découvertes dans son Systèma Saturnium. ouyrage qui contient encore quelques traces de ces idées pythagoriciennes dont Kepler avait tant abusé; mais que le véritable esprit des sciences qui, dans ce beau siècle, fit de si grands progrès, a pour toujours effacées. Le satellite de Saturne, égalait le nombre des satellites, à celui des planètes alors connues. Huyghens jugeant cette égalité nécessaire à l'harmonie du Système du Monde, osa presque affirmer qu'il ne restait plus de satellites à découyrir; et peu d'années après, Cassini en reconnut quatre nouveaux à la même planète. La Géométrie, la Mécanique et l'Optique doivent à Huyghens un grand nombre de découvertes, et si ce rare génie eût eu l'idée de combiner ses théorèmes sur la force centrifuge. avec ses belles recherches sur les développées, et avec les lois de Kepler; il eût enlevé à Newton, sa théorie des mouvemens curvilignes et celle de la pesanteur universelle. Mais c'est dans de semblables rapprochemens, que consistent les découvertes.

Dans le même temps, Hevelius se rendit célèbre par d'immenses travaux. Il a existé peu d'observateurs aussi infatigables: on regrette qu'il n'ait pas voulu adopter l'application des lunettes au quart de cercle, invention dont on est redevable à Picard, et qui en donnant aux observations, une précision jusqu'alors inconnue, a rendu la plupart de celles d'Hevelius, inutiles à l'Astronomie.

A cette époque, l'Astronomie prit un nouvel essor, par l'établissement des sociétés savantes. La nature est tellement variée dans ses productions et dans ses phénomènes, il est si difficile d'en pénétrer les causes; que pour la connaître et la forcer à nous dévoiler ses lois, il faut qu'un grand nombre d'hommes réunissent leurs lumières et leurs efforts. Cette réunion devient surtout nécessaire, quand le progrès des sciences, multipliant leurs points de contact, et ne permettant plus à un seul homme de les approfondir toutes; elles ne peuvent recevoir que de plusieurs savans, les secours mutuels qu'elles se demandent. Alors, le Physicien a recours au Géomètre, pour s'élever aux causes générales des

phénomènes qu'il observe; et le Géomètre interroge à son tour le Physicien, pour rendre ses recherches utiles en les appliquant à l'expérience, et pour se frayer par ces applications mêmes, de nouvelles routes dans l'analyse. Mais le principal avantage des académies, est l'esprit philosophique qui doit s'y introduire, et de là se répandre dans toute une nation et sur tous les objets. Le savant isolé peut se livrer sans crainte à l'esprit de système : il n'entend que de loin, la contradiction qu'il éprouve. Mais dans une société savante, le choc des opinions systématiques finit bientôt. par les détruire, et le desir de se convaincre mutuellement, établit nécessairement entre les membres, la convention de n'admettre que les résultats de l'observation et du calcul. Aussi l'expérience a-t-elle montré que depuis l'origine des académies, la vraie philosophie s'est généralement répandue. En donnant l'exemple de tout soumettre à l'examen d'une raison sévère, elles ont fait disparaître les préjugés qui trop long-temps avaient régné dans les sciences, et que les meilleurs esprits des siècles précédens avaient partagés. Leur utile influence sur l'opinion, a dissipé des erreurs accueillies de nos jours, avec un enthousiasme qui, dans d'autres temps, les aurait perpétuées. Également éloignées de la crédulité qui fait tout admettre, et de la prévention qui porte à rejeter tout ce qui s'écarte des idées reçues; elles ont toujours sur les questions difficiles et sur les phénomènes extraordinaires, sagement attendu les réponses de l'observation et de l'expérience, en les provoquant par des prix et par leurs propres travaux. Mesurant leur estime, autant à la grandeur et à la difficulté d'une découverte, qu'à son utilité immédiate, et persuadées par beaucoup d'exemples, que la plus stérile en apparence, peut avoir, un jour, des suites importantes; elles ont encouragé la recherche de la vérité sur tous les objets, n'excluent que ceux qui, par les bornes de l'entendement humain, lui seront à jamais inaccessibles. Enfin c'est de leur sein, que se sont élevées ces grandes théories que leur généralité met au-dessus de la portée du vulgaire, et qui se répandant par de nombreuses applications, sur la nature et sur les arts, sont devenues d'inépuisables sources de lumières et de jouissances. Les gouvernemens sages convaincus de l'utilité des sociétés sayantes, et les

envisageant comme l'un des principaux fondemens de la gloire et de la prospérité des empires, les ont instituées et placées près d'eux, pour s'éclairer de leurs lumières dont souvent ils ont retiré de grands avantages.

De toutes les sociétés savantes, les deux plus célèbres par le grand nombre et l'importance des découvertes dans l'Astronomie. sont, l'Académie des Sciences de Paris, maintenant la première classe de l'Institut français, et la Société Royale de Londres. La première fut créée en 1666, par Louis XIV qui pressentit l'éclat que les sciences et les arts devaient répandre sur son règne. Ce monarque dignement secondé par Colbert, invita plusieurs savans étrangers à venir se fixer dans sa capitale. Huyghens se rendit à cette invitation flatteuse : il publia dans le sein de l'Académie dont il fut un des premiers membres, son admirable ouvrage de Horologio oscillatorio. Il aurait fini ses jours dans sa nouvelle patrie, sans l'édit désastreux qui, vers la fin de l'avant-dernier siècle, priva la France, de tant de citoyens utiles. Huyghens, en s'éloignant d'un pays dans lequel on proscrivait la réligion de ses ancêtres, se retira à la Haye ou il était né le 14 avril 1629, et où il mourut le 26 juin 1695.

- Dominique Cassini fut pareillement attiré à Paris, par les bienfaits de Louis XIV. Pendant quarante ans d'utiles travaux, il enrichit l'Astronomie, d'une foule de découvertes : telles sont, la théorie des satellites de Jupiter, dont il détermina les mouvemens, par les observations de leurs éclipses ; la découverte de quatre satellites de Saturne, de la rotation de Jupiter et de Mars, de la lumière zodiacale; la connaissance fort approchée de la parallaxe du soleil; une table de réfractions très-exacte; et surtout, la théorie complète de la libration de la lune. Galilée n'avait considéré que la libration en latitude: Hevelius expliqua la libration en longitude, en supposant que la lune présente toujours la même face, au centre de l'orbe lunaire dont la terre occupe un des foyers. Newton, dans une lettre adressée à Mercator en 1675, perfectionna l'explication d'Heveline, en la ramenant à l'idée simple d'une rotation uniforme de la lune sur elle-même, pendant qu'elle se meut inégalement autour de la terre; mais il supposait avec Hevelius, l'axe de rotation

toujours perpendiculaire à l'échiptique. Cassini reconnut par ses propres observations, qu'il lui était un peu incliné d'un angle constant; et pour satisfaire à la condition déjà observée par Hevelius, suivant laquelle toutes les inégalités de la libration se rétablissent à chaque révolution des nœuds de l'orbe lunaire; il fit coïncider constantment aveb eux, les nœuds de l'équateur lunaire. Tel a été le progrès des idéen, sur un des points les plus ourieux du système du monde.

Le grand nombre des Académiciens astronomes d'un rare mérite, et les bornes de ce précis historique, ne me permettent pas de rendre compte de leurs travaux; je me contenterai d'observer que l'application du télescope su quart de cercle, l'invention du micromètre et de l'héliomètre, la propagation successive de la lumière, la grandeur de la terre, et la diminution de la peranteur à l'équateur, sont autant de découvertes sorties du sein de l'Académie des Sciences.

L'Astronomie n'est pas moins redevable à la Société Royale de Londres, dont l'origine est de quelques années, antérieurs à celle de l'Académie des Sciences. Parmi les Astronomes qu'elle a produits, je citerai, Flamsteed, l'un des plus grands observateurs qui aient paru; Halley, illustre par des voyages entrepris pour l'avancement des sciences, par son beau travail sur les comètes, qui lui fit découvrir le retour de la comète de 1750, et par l'idée ingénieuse d'employer les passages de Vénus sur le soleil, à la détermination de sa parallaxe. Je citerai enfin Bradley, le modèle des observateurs, et célèbre à jamais par deux des plus belles découvertes que l'oriait faites en Astronomie, l'aberration des fixes, et la autation de l'axe de la terre.

Quand l'application du pendule aux horloges, et du télescope au quart de cercle, ent rendu sensible aux observateurs, les plus petits changemens dans la position des corps élestes, ils dierchèrent à déterminer la parallaxe annuelle des étoiles; car il était naturel de penser qu'une aussi grande étendus que le diamètre de l'orbe terrestre, est encore sensible à la distance de ces astres. En les observant avec soin dans toutes les saisons de l'année; ils aperçurent de légères variations, quelquefois favorables, mais le plus souvent

contraires aux effets de la parallaxe. Pour déterminer la loi de ces variations, il fallait un instrument d'un grand rayon, et divisé avec un soin extrême. L'artiste qui l'exécuta, mérite une part dans la gloire de l'Astronome qui lui doit ses découvertes. Graham, fameux horloger anglais, construisit un grand secteur avec lequel Bradley reconnut en 1727, l'aberration des étoiles. Pour l'expliquer, ce grand Astronome eut l'heureuse idée de combiner le mouvement de la terre, avec celui de la lumière, que Roëmer à la fin de l'avantdernier siècle, avait conclu des éclipses des satellites de Jupiter. On doit être surpris que dans l'intervalle d'un demi-siècle, qui sépare cette découverte de celle de Bradley, aucun des savans très-distingués qui existaient alors, et qui tous admettaient le mouvement de la lumière, n'ait fait attention aux effets très-simples qui en résultent sur la position des étoiles. Mais l'esprit humain si actif dans la formation des systèmes, a souvent attendu que l'observation et l'expérience lui aient fait connaître d'importantes vérités que le simple raisonnement eût pu lui faire découvrir. C'est ainsi que l'invention du télescope a suivi de plus de trois siècles, celle des verres lenticulaires, et n'a même été due qu'au hasard.

En 1745, Bradley reconnut par l'observation, la mutation de l'axe terrestre et ses lois. Dans toutes ces variations apparentes des étoiles, observées avec un soin extraordinaire, il n'aperçut rien qui indiquât une parallaxe sensible. On doit encore à ce grand Astronome, le premier aperçu des principales inégalités des satellites de Jupiter, que Wargentin ensuite a développées avec étendue. Enfin, il a laissé un reçueil immense d'observations de tous les phénomènes que le ciel a présentés vers le milieu du dernier siècle, pendant plus de dix arnées consécutives. Le grand nombre de ces observations et la précision qui les distingue, font de ce recueil; l'un des principaux fondemens de l'Astronomie moderne, et l'époque d'où l'on doit partir maintenant, dans les recherches délicates de la science. Il a servi de modèle à plusieurs recueils semblables qui successivement perfectionnés par le progrès des arts, sont autant de jalons placés sur la route des corps célestes, pour en marquer les changemens périodiques et séculaires.

A la même époque, fleurirent Lacaille en France, et Tobie Mayer

en Allemagne: tous deux observateurs infatigables et laborieux calculateurs, ont perfectionné les théories et les Tables astronomiques, et ils ont formé sur leurs propres observations, des catalogues d'étoiles, qui comparés à celui de Bradley, fixent avec une exactitude extrême, l'état du ciel au milieu du dernier siècle.

Les mesures des degrés des méridiens terrestres et du pendule, multipliées dans les diverses parties du globe, opération dont la France a donné l'exemple, en mesurant l'arc total du méridien qui la traverse, et en envoyant des Académiciens au nord et à l'équateur, pour y observer la grandeur de ces degrés et l'intensité de la pesanteur ; l'arc du méridien compris entre Dunkerque et Formentera, déterminé par des observations très-précises et servant de base au système de mesures, le plus naturel et le plus simple; les voyages entrepris pour observer les deux passages de Vénus sur le soleil, en 1761 et 1769, et la connaissance très-approchée des dimensions du système solaire, fruit de ces voyages; l'invention des lunettes achromatiques, des montres marines, de l'octant et du cercle répétiteur inventé par Mayer et perfectionné par Borda; la formation par Mayer, de Tables lunaires assez exactes pour servir à la détermination des longitudes à la mer; la découverte de la planète Uranus, faite par Herschell en 1781; celles de ses sateilites et de deux nouveaux satellites de Saturne, dues au même observateur; telles sont, avec les découvertes de Bradley, les principales obligations dont l'Astronomie est redevable au dernier siècle qui en sera toujours avec le précédent, la plus glorieuse époque.

Le siècle actuel a commencé sous les auspices les plus favorables à l'Astronomie: son premier jour est remarquable par la découverte de la planète Cérès, faite par Piazzi à Palerme; et cette découverte a bientôt été suivie par celles des trois planètes, Junon, Pallas et Vesta, dont on est redevable à Olbers et Harding.

CHAPITRE V.

De la découverte de la pesanteur universelle.

Après avoir montré par quels efforts successifs, l'esprit humain s'est élevé à la connaissance des lois des mouvemens célestes; il me reste à faire voir comment il est parvenu à découvrir le principe général dont ces lois dépendent.

Descartes essaya le premier, de ramener à la mécanique, les mouvemens des corps célestes : il imagina des tourbillons de matière subtile, au centre desquels il plaça chacun de ces corps : les tourbillons des planètes entraînaient les satellites; et le tourbillon du soleil entraînait les planètes, les satellites, et leurs tourbillons. Les mouvemens des comètes dirigés dans tous les sens, ont fait disparaître ces tourbillons divers, comme ils avaient anéanti les cieux solides, et tout l'appareil des cercles imaginés par les anciens Astronomes. Ainsi, Descartes ne fut pas plus heureux dans la Mécanique céleste, que Ptolémée dans l'Astronomie; mais leurs travaux n'ont point été inutiles aux sciences. Ptolémée nous a transmis, à travers quatorze siècles d'ignorance, les vérités astronomiques que les anciens avaient découvertes, et qu'il avait encore accrues. A l'époque où Descartes parut, le mouvement imprimé aux esprits, par les querelles religieuses et par la découverte de l'imprimerie et du Nouveau-Monde, les rendait avides de nouveautés. Ce philosophe substituant à de vicilles erreurs, des erreurs plus séduisantes, soutenues de l'autorité de ses découvertes géométriques, détruisit l'empire d'Aristote, qu'une philosophie plus sage eût difficilement ébranlé. Mais en posant en principe, qu'il fallait commencer par douter de tout, il avertit lui-même de soumettre ses opinions à un

examen sévère, et son système des tourbillons, accueilli d'abord avec enthousiasme, ne résista pas long-temps aux vérités nouvelles qui lui furent opposées.

Il était réservé à Newton, de nous faire connaître le principe général des mouvemens célestes. La nature, en le douant d'un profond génie, prit encore soin de le placer à l'époque la plus favorable. Descartes avait changé la face des sciences mathématiques, par l'application féconde de l'algèbre à la théorie des courbes et des fonctions variables: Fermat avait posé les fondemens de la géométrie de l'infini, par sa belle méthode de maximis et minimis, et des tangentes: Wallis, Wren et Huyghens venaient de trouver les lois du mouvement : les découvertes de Galilée sur la chute des graves, et celles d'Huyghens sur les développées et sur la force centrifuge, conduisaient à la théorie du mouvement dans les courbes : Kepler avait déterminé celles que décrivent les planètes, et entrevu la gravitation universelle : enfin, Hook avait très-bien vu que leurs mouvemens sont le résultat d'une force primitive de projection, combinée avec la force attractive du soleil. La Mécanique céleste n'attendait ainsi pour éclore, qu'un homme de génie qui en généralisant ces découvertes, sat en tirer la loi de la pesanteur. C'est ce que Newton exécuta dans son immortel ouvrage des Principes mathématiques de la Philosophie naturelle.

Cet homme célèbre à tant de titres, naquit à Woolstropp en Angleterre, sur la fin de 1642, l'année même de la mort de Galilée. Ses premières études en mathématiques, annoncèrent ce qu'il serait un jour : une lecture rapide des livres élémentaires lui suffit pour les entendre : il parcourut ensuite la Géométrie de Descartes, l'Optique de Kepler et l'Arithmétique des infinis de Wallis; et s'élevant bientot à des inventions nouvelles, il fut avant l'âge de vingt-sept ans, en possession de son Calcul des fluxions, et de sa Théorie de la homière. Jaloux de son repos, et redoutant les querelles littéraires, qu'il eût mieux évitées en publiant plutôt ses découvertes, il ne se pressa point de les mettre su jour. Le docteur Barrow dont il fut le disciple et l'ami, se démit en sa faveur, de la place de professeur de mathématiques dans l'université de Cambridge. Ce fut pendant qu'il la remplissait, que cédant aux instances

de la Société Royale de Londres, et aux sollicitations de Halley, il publia son ouvrage des Principes. L'Université dont il était membre, le choisit pour son représentant, dans le parlement de convention de 1688, et dans celui qui fut convoqué en 1701. Il fut nominé directeur de la monnaie, et créé chevalier par la reine Anne: élu en 1705, président de la Société Royale de Londres, il le fut sans interruption jusqu'à sa mort arrivée en 1727. Enfin, il jouit de la plus haute considération, pendant sa longue vie; et sa nation dont il avait fait la gloire, lui décerna les honneurs funèbres les plus distingués.

En 1666, Newton retiré à la campagne, dirigea pour la première fois, sa pensée vers le système du monde : la pesanteur des corps au sommet des plus hautes montagnes, à très-peu près la même qu'à la surface de la terre, lui fit conjecturer qu'elle s'étend jusqu'à la lune; et qu'en se combinant avec le mouvement de projection de ce satellite, elle lai fait décrire un orbe elliptique, autour de la terre. Pour vérifier cette conjecture, il fallait connaître la loi de diminution de la pesanteur. Newton considéra que si la pesanteur terrestre retient la lune dans son orbite, les planètes doivent être retenues pareillement dans leurs orbes, par leur pesanteur vers le soleil, et il le démontra par la loi des aires proportionnelles aux temps; or il résulte du rapport constant trouvé par Kepler, entre les carrés des temps des révolutions des planètes, et les cubes des grands axes de leurs orbes, que leur force centrifuge, et par conséquent, leur tendance vers le soleil, diminue en raison du carré de leurs distances à cet astre; Newton transporta donc à la terre, cette loi de diminution de la pesanteur. En partant des expériences de Galilée sur la chute des graves, il détermina la hauteur dont la lune abandonnée à elle-même descendrait vers la terre, dans un court intervalle de temps. Cette hauteur est le sinus verse de l'arc qu'elle décrit dans le même intervalle, sinus que la parallaxe lunaire donne en parties du rayon terrestre; ainsi, pour comparer à l'observation, la loi de la pesanteur réciproque au carré des distances, il était nécessaire de connaître la grandeur de ce rayon. Mais Newton n'ayant alors, qu'une mesure fautive du méridien terrestre, il parvint à un résultat différent de celui qu'il attendait; et soupçonnant que des

forces inconnues se joignaient à la pesanteur de la lune, il abandonna ses idées. Quelques années après, une lettre du docteur Hook lui fit rechercher la nature de la courbe décrite par les projectiles autour du centre de la terre. Picard venait de mesurer en France. un degré du méridien : Newton reconnut au moyen de cette mesure. que la lune était retenue dans son orbite, par le seul pouvoir de la gravité supposée réciproque au carré des distances. D'après cette loi, il trouva que la ligne décrite par les corps dans leur chute, est une ellipse dont le centre de la terre occupe un des foyers: considérant ensuite que Kepler avait reconnu par l'observation, que les orbes des planètes sont pareillement des ellipses au foyer desquelles le centre du soleil est placé; il eut la satisfaction de voir que la solution qu'il avait entreprise par curiosité, s'appliquait aux plus grands objets de la nature. Il rédigea plusieurs propositions relatives au mouvement elliptique des planètes, et le docteur Halley l'ayant engagé à les publier, il composa son ouvrage des Principes. mathématiques de la Philosophie naturelle, qui parut en 1687. Ces détails que nous tenons de Pemberton, contemporain et ami de Newton qui les a confirmés par son témoignage, prouvent que ce grand Géomètre avait trouvé en 1666, les principaux théorêmes sur la force centrifuge, qu'Huyghens ne publia que six ans après à la fin de son onyrage de Horologio oscillatorio. Il est très-croyable, en effet, que l'auteur de la Méthode des Fluxions, qui paraît avoir été dès-lors en possession de cette méthode, a facilement découvert ces théorèmes.

Newton était parvenu à la loi de la pesanteur, au moyen du rapport entre les carrés des temps des révolutions des planètes, et les cubes des axes de leurs orbes supposés circulaires: il démontra que ce rapport a généralement lieu dans les orbes elliptiques, et qu'il indique une égale pesanteur des planètes vers le soleil, en les supposant placées à la même distance de son centre. La même égalité de pesanteur vers la planète principale, existe dans tous les systèmes de satellites; et Newton la vérifia sur les corps terrestres; par des expériences très-précises que l'on a plusieurs fois répétées, et d'où il résulte que le développement des gaz, de l'électricité, de la chaleur et des affinités, dans le mélange de plusieurs substances contenues

dans un vaisseau fermé, n'altèrent le poids du système, ni pendant ni après le mélange.

En généralisant ensuite ces recherches, ce grand Géomètre fit voir qu'un projectile peut se mouvoir dans une section conique quelconque, en vertu d'une force dirigée vers son foyer, et réciprodue au carré des distances : il développa les diverses propriétés du mouvement dans ce genre de courbes : il détermina les conditions nécessaires pour que la courbe soit un cercle, une ellipse, une parabele ou une hyperbole, conditions qui ne dépendent que de la vitesse et de la position primitive du corps. Quelles que soient, cette vîtesse, cette position et la direction initiale du mouvement; Newton assigna une section conique que le corps peut décrire, et dans laquelle il doit conséquemment se mouvoir; ce qui répond au reproche que lui fit Jean Bernoulli, de n'avoir point démontré que les sections coniques sont les seules courbes que puisse décrire un corps sollicité par une force réciproque au carré des distances. Ces recherches appliquées au mouvement des comètes, lui appairent que ces astres se meuvent autour du soleil, suivant les mêmes lois que les planètes, avec la seule différence que leurs ellipses sont trèsalongées; et il donna le moyen de déterminer par les observations, les élémens de ces ellipses.

La comparaison de la grandeur des orbes des satellites et de la durée de leurs révolutions, avec les mêmes quantités relatives aux planètes, lui fit connaître les masses et les densités respectives du soleil et des planètes accompagnées de satellites, et l'intensité de la pesanteur à leur surface.

En considérant que les satellites se meuvent autour de leurs planètes, à fort peu près comme si ces planètes étaient immobiles; il reconnut que tous ces corps obéissent à la même pesanteur vers le soleil. L'égalité de l'action à la réaction, ne lui permit point de douter que le soleil pèse vers les planètes, et celles-ci vers leurs satellites; et même que la terre est attirée par tous les corps qui pèsent sur elle. Il étendit ensuite cette propriété à toutes les parties de la matière, et il établit en principe, que chaque molécule de matière attire toutes les autres, en raison de sa masse et réciproquement au carré de sa distance à la molécule attirée.

Ce principe n'est pas simplement une hypothèse qui satisfait à des phénomènes susceptibles d'être autrement expliqués, comme on satisfait de diverses manières, aux équations d'un problème indéterminé. Ici le problème est déterminé par les lois observées dans les mouvemens célestes dont ce principe est un résultat nécessaire. La pesenteur des planètes vers le soleil est démontrée par la loi des aires proportionnelles aux temps : sa diminution en raison inverse du carré des distances est prouvée par l'ellipticité des orbes planétaires; et la loi des carrés des temps des révolutions, proportionnels aux cubes des grands axes, montre avec évidence, que la pesanteur solaire agirait également sur toutes les planètes supposées à la même distance du soleil, et dont les poids seraient par conséquent en raison des masses. L'égalité de l'action à la réaction fait voir que le soleil pèse à son tour vers les planètes, proportionnellement à leurs masses divisées par les carrés de leurs distances à cet astre. Les mouvemens des satellites nous prouvent qu'ils pésent à-la-fois vers le soleil et leurs planètes, qui pèsent réciproquement sur eux; ensorte qu'il existe entre tous les corps du système solaire, une attraction mutuelle, proportionnelle aux masses et réciproque au carré des distances. Enfin, leur figure sphérique et les phénomènes de la pesanteur à la surface de la terre, ne laissent aucun lieu de douter que cette attraction n'appertient pas seulement à ces corps considérés en masse, mais qu'elle est propre à chacune de leurs molécules.

Parvenu à ce principe, Newton en vit découler les grands phénomènes du système du monde. En envisageant la pesanteur à la surface des corps célestes, comme la résultante des attractions de toutes leurs molécules; il trouva ces résultats remarquables, savoir, que la force attractive d'une sphère ou d'une couche sphérique, sur un point placé au-dehors, est la même que si sa masse était réunie à son centre; et qu'un point placé au-dedans d'une couche sphérique, et généralement, d'une couche terminée par deux surfaces elliptiques semblables et semblablement placées, est également attiré de toutes parts. Il prouva que le mouvement de rotation de la terre a dû l'aplatir à ses pôles; et il détermina les lois de la variation des degrés des méridiens et de la pesanteur, en

supposant cette planète homogène. Il vit que l'action du soleil et de la lune sur le sphéroïde terrestre, doit produire un mouvement angulaire dans son axe de rotation, faire rétrograder les équinoxes. souleyer les eaux de l'Océan, et entretenir dans cette grande masse fluide, les oscillations que l'on y observe sous le nom de flux et reflux de la mer. Enfin, il s'assura que les inégalités du mouvement de la lune, sont dues aux actions combinées du soleil et de la terre. Mais à l'exception de ce qui concerne le mouvement elliptique des planètes et des comètes, l'attraction des corps sphériques, et l'intensité des forces attractives du soleil et des planètes accompagnées de satellites; toutes ces découvertes n'ont été qu'ébauchées par Newton. Sa théorie de la figure des planètes, est limitée par la supposition de leur homogénéité. Sa solution du problème de la précession des équinoxes, quoique fort ingénieuse, et malgré l'accord apparent de son résultat avec les observations, est défectuense à plusieurs égards. Dans le grand nombre des perturbations des mouvemens célestes, il n'a considéré que celles du mouvement lunaire, dont la plus considérable, l'évection, a échappé à ses recherchés. Il a parfaitement établi l'existence du principe qu'il a découvert; mais le développement de ses conséquences et de ses avantages, a été l'ouvrage des successeurs de ce grand Géomètre. L'imperfection du calcul de l'infini à sa naissance, ne lui a pas permis de résoudre complètement les problèmes difficiles qu'offre la théorie du système du monde; et il a été souvent forcé de ne donner que des aperçus, toujours incertains jusqu'à ce qu'ils aient été vérifiés par une rigoureuse analyse. Malgré ces défauts inévitables; l'importance et la généralité des découvertes, un grand nombre de vues originales et profondes qui ont été le germe des plus brillantes théories des Géomètres du dernier siècle, tout cela, présenté avec beaucoup d'élégance, assure à l'ouvrage des Principes mathématiques de la Philosophie naturelle, la prééminence sur les autres productions de l'esprit humain.

Il n'en est pas des sciences, comme de la littérature : celle-ci a des limites qu'un homme de génie peut atteindre, lorsqu'il emploie une langue perfectionnée : on le lit avec le même intérêt dans tous les âges ; et le temps ne fait qu'ajouter à sa réputation, par les vains

efforts de ceux qui cherchent à l'imiter. Les sciences, au contraire, sans bornes, comme la nature, s'accroissent à l'infini par les travaux des générations successives: le plus parfait ouvrage, en les élevant à une hauteur d'où elles ne peuvent désormais descendre, donne naissance à des découvertes qui les accroîtront encore, et prépare ainsi des ouvrages qui doivent l'effacer. D'autres présenteront sous un point de vue plus général et plus simple, les théories exposées dans le livre des Principes, et toutes les vérités qu'il a fait éclore; mais il restera comme un monument éternel de la profondeur du génie qui nous a révélé la plus grande loi de l'univers.

Cet ouvrage, et le Traité non moins original du même auteur sur l'Optique, réunissent au mérite des découvertes, celui d'être les meilleurs modèles que l'on puisse se proposer dans les sciences, et dans l'art délicat de faire les expériences et de les assujétir au calcul. On y voit les plus heureuses applications de la méthode qui consiste à s'élever par une suite d'inductions, des phénomènes aux causes, et à redescendre ensuite de ces causes, à tous les détails des phénomènes.

Les lois générales sont empreintes dans tous les cas particuliers; mais elles y sont compliquées de tant de circonstances étrangères, que la plus grande adresse est souvent nécessaire pour les faire ressortir. Il faut choisir ou faire naître les phénomènes les plus propres à cet objet, les multiplier pour en varier les circonstances, et observer ce qu'ils ont de commun entre cux. Ainsi, l'on s'élève successivement à des rapports de plus en plus étendus, et l'on parvient enfin aux lois générales que l'en vérifie, soit par des preuves ou par des expériences directes, lorsque cela est possible, soit en examinant si elles satisfont à tous les phénomènes connus.

Telle est la méthode la plus sûre qui puisse nous guider dans la recherche de la vérité. Aucun philosophe n'a été, plus que Newton, fidèle à cette méthode : aucun n'a possédé à un plus haut point, ce tact houreux qui, faisant discerner dans les objets, les principes généraux qu'ils recèlent, constitue le véritable génie des sciences; tact qui lui fit reconnaître dans la chute d'un corps, le principe de la pesanteur universelle. Les savans anglais ses contemporains adoptèrent, à son exemple, la méthode des inductions, qui devint alors la base d'un grand nombre d'excellens ouvrages sur la physique et l'analyse.

Les philosophes de l'antiquité, suivant une route contraire, et se plaçant à la source de tout, imaginèrent des causes générales pour tout expliquer. Leur méthode qui n'avait enfanté que de vains systèmes, n'eut pas plus de succès entre les mains de Descartes. Au temps de Newton; Leibnitz, Mallebranche et d'autres philosophes l'employèrent avec aussi peu d'avantage. Enfin, l'inutilité des hypothèses qu'elle a fait imaginer, et les progrès dont les sciences sont redevables à la méthode des inductions, ont ramené les bons esprits à cette dernière méthode que le chancelier Bacon avait établie avec toute la force de la raison et de l'éloquence, et que Newton a plus fortement encore recommandée par ses découvertes.

A l'époque où elles parurent, Descartes venait de substituer aux qualités occultes des péripatéticiens, les idées intelligibles de mouvement, d'impulsion et de force centrifuge. Son ingénieux système des tourbillons, fondé sur ces idées, avait été avidement reçu des savans que rebutaient les doctrines obscures et insignifiantes de l'école; et ils crurent voir renaître dans l'attraction universelle, ces qualités occultes que le philosophe français avait si justement proscrites. Ce ne fut qu'après avoir reconnu le vague des explications cartésiennes, que l'on envisagea l'attraction, comme elle devait l'être, c'est-à-dire, comme un fait général auquel Newton s'était élevé par une suite d'inductions, et d'où il était redescendu pour expliquer les mouvemens célestes. Ce grand homme aurait mérité, sans doute, le reproche de rétablir les qualités occultes; s'il se fût contenté d'attribuer à l'attraction universelle, le mouvement elliptique des planètes et des comètes, les inégalités du mouvement de la lune, celles des degrés terrestres et de la pesanteur, la précession des équinoxes, et le flux et reflux de la mer; sans démontrer la liaison de son principe avec ces phénomènes. Mais les Géomètres, en rectifiant et généralisant ses démonstrations, et comparant toutes les observations au même principe, ayant trouvé le plus parfait accord entre elles et les résultats de l'analyse; ils out unanimement adopté sa théorie du système du monde, devenue par leurs recherches, la base de toute l'Astronomie. Cette liaison analytique des faits particuliers avec un fait général, est ce qui constitue une théorie. C'est ainsi qu'ayant déduit par un calcul rigoureux, tous les effets du

mouvement de la lumière et de la capillarité, du seul principe d'une attraction mutuelle entre les molécules de la matière, qui ne devient sensible qu'à des distances imperceptibles; nous pouvons nous flatter d'avoir la vraie théorie de ces phénomènes. Quelques savans frappés des avantages qu'a produits l'admission de principes dont les causes sont inconnues, ont ramené dans plusieurs branches des sciences naturelles, les qualités occultes des anciens, et leurs explications insignifiantes. Envisageant la philosophie newtonienne, sous le même point de vue qui la fit rejeter des Cartésiens; ils lui ont assimilé leurs doctrines qui n'ont, cependant, rien de commun avec elle, dans le point le plus important, la comparaison avec les phénomènes.

C'est au moyen de la synthèse, que Newton a exposé sa théorie du système du monde. Il paraît cependant qu'il avait trouvé la plupart de ses théorèmes, par l'analyse dont il a reculé les limites, et à laquelle il convient lui-même qu'il était redevable de ses résultats généraux sur les quadratures. Mais sa prédilection pour la synthèse, et sa grande estime pour la géométrie des anciens. lui firent traduire sons une forme synthétique, ses théorèmes et sa méthode même des fluxions; et l'on voit par les règles et les exemples qu'il a donnés de ces traductions, combien il y attachait d'importance. On doit regretter avec les Géomètres de son temps. qu'il n'ait pas suivi dans l'exposition de ses découvertes, la route par laquelle il y était parvenu, et qu'il ait supprimé les démonstrations de plusieurs résultats, tels que l'équation du solide de la moindre résistance; préférant le plaisir de se faire deviner, à celui d'éclairer ses lecteurs. La comaissance de la méthode qui a guidé l'homme de génie, n'est pas moins utile au progrès de la science et même à sa propre gloire, que ses découvertes; et le principal avantage que l'on a retiré de la fameuse dispute élevée entre Leibnitz et Newton, touchant l'invention du calcul infinitésimal, a été de faire connaître la marche de ces deux grands hommes, dans leurs premiers travaux analytiques.

La préférence de Newton pour la synthèse, peut s'expliquer par l'élégance avec laquelle il a pu lier sa théorie des mouvemens curvilignes, aux recherches des anciens sur les sections coniques,

et aux belles découvertes qu'Huyghens venait de publier par cette méthode. La synthèse géométrique a d'ailleurs la propriété de ne faire jamais perdre de vue son objet, et d'éclairer la route entière qui conduit des premiers axiomes, à leurs dernières conséquences: au lieu que l'analyse algébrique nous fait bientôt oublier l'objet principal, pour nous occuper de combinaisons abstraites, et ce n'est qu'à la fin, qu'elle nous y ramène. Mais en s'isolant ainsi des objets, après en avoir pris ce qui est indispensable pour arriver au résultat que l'on cherche; en s'abandonnant ensuite aux opérations de l'analyse, et réservant toutes ses forces pour vaincre les difficultés qui se présentent; on est conduit par la généralité de cette méthode, et par l'inestimable avantage de transformer le raisonnement, en procédés mécaniques, à des résultats souvent inaccessibles à la synthèse. Telle est la fécondité de l'analyse, qu'il suffit de traduire dans cette langue universelle, les vérités particulières, pour voir sortir de leurs seules expressions, une foule de vérités nouvelles et inattendues. Aucune langue n'est autant susceptible de l'élégance qui naît du développement d'une longue suite d'expressions enchaînées les unes aux autres, et découlant toutes, d'une même idée fondamentale. L'analyse réunit encore à ces avantages, celui de pouvoir toujours conduire aux méthodes les plus simples : il ne s'agit pour cela, que de l'appliquer d'une manière convenable, par un choix heureux des inconnues, et en donnant aux résultats, la forme la plus facile à construire géométriquement, ou à réduire en calcul numérique : Newton lui-même en offre beaucoup d'exemples dans son Arithmétique universelle. Aussi les Géomètres modernes convaincus de cette supériorité de l'analyse, se sont spécialement appliqués à étendre son domaine et à reculer ses bornes.

Cependant, les considérations géométriques ne doivent point être abandonnées: elles sont de la plus grande utilité dans les arts. D'ailleurs, il est curieux de se figurer dans l'espace, les divers résultats de l'analyse; et réciproquement, de lire toutes les affections des lignes et des surfaces, et toutes les variations du mouvement des corps, dans les équations qui les expriment. Ce rapprochement de la géométrie et de l'analyse, répand un nouveau jour sur ces deux sciences: les opérations intellectuelles de celle-ci, rendues

sensibles par les images de la première, sont plus faciles à saisir, plus intéressantes à suivre; et quand l'observation réalise ces images et transforme les résultats géométriques, en lois de la nature; quand ces lois, en embrassant l'univers, dévoilent à nos yeux, ses états passés et à venir; la vue de ce sublime spectacle nous fait éprouver le plus noble des plaisirs réservés à la nature humaine.

Environ cinquante ans s'écoulèrent depuis la découverte de la pesanteur universelle, sans que l'on y ajoutat rien de remarquable : il fallut tout ce temps à cette grande vérité, pour être généralement comprise, et pour surmonter les obstacles que lui opposaient le système des tourbillons, et l'autorité des Géomètres contemporains de Newton, qui la combattirent, peut-être, par amour propre; mais qui cependant, en ont hâté le progrès, par leurs travaux sur l'analyse infinitésimale. Ensuite, leurs successeurs ont eu l'heureuse idée d'appliquer cette analyse, aux mouvemens célestes : ils sont ainsi parvenus à expliquer par la loi de la pesanteur, tous les phénomènes du système du monde, et à donner aux théories et aux tables astronomiques, une précision inespérée. Il n'y a pas encore trois siècles, que Copernic introduisit le premier dans ces Tables, les mouvemens de la terre et des planètes autour du soleil: environ un siècle après, Kepler y fit entrer les lois du mouvement elliptique, qui dépendent de la seule attraction solaire: maintenant. elles renferment les nombreuses inégalités qui naissent de l'attraction mutuelle de tous les corps du système planétaire : tout empirisme en est banni, et elles n'empruntent de l'observation, que les données indispensables.

C'est principalement dans ces applications de l'analyse, que se manifeste la puissance de ce merveilleux instrument, sans lequel il eût été impossible de pénétrer un mécanisme aussi compliqué dans ses effets, qu'il est simple dans sa cause. Le Géomètre embrasse à présent dans ses formules, l'ensemble du système solaire et de ses variations successives : il remonte par la pensée, aux divers états que ce système a subis dans les temps les plus reculés, et redescend à tous ceux que les temps à venir dévoilerent aux observateurs. Il voit ces grands changemens dont l'entier développement exige des millions d'années, se renouveler en peu de siècles, dans

le système des satellites de Jupiter par la promptitude de leurs révolutions, et y produire de singuliers phénomènes entrevus par les Astronomes, mais trop compliqués ou trop lents pour qu'ils en aient pu déterminer les lois. La théorie de la pesanteur, devenue par tant d'applications, un moyen de découvertes, aussi certain que l'observation elle-même, lui a fait connaître un grand nombre d'inégalités nouvelles dont les plus remarquables sont les inégalités de Jupiter et de Saturne, et les équations séculaires des mouvemens de la lune, par rapport à ses nœuds, à son périgée et au soleil.

Par ce moyen, le Géomètre a su tirer des observations, comme d'une mine féconde, les élémens les plus importans de l'Astronomie, qui sans l'analyse, y resteraient éternellement cachés. Il a déterminé les valeurs respectives des masses du soleil, des planètes et des satellites, par les révolutions de ces différens corps, et par le développement de leurs inégalités périodiques et séculaires : la vîtesse de la lumière et l'ellipticité de Jupiter, lui ont été données par les éclipses des satellites, avec plus de précision que par l'observation directe : il a conclu la rotation d'Uranus, de Saturne et de son anneau, et l'aplatissement de ces deux planètes, de la position respective des orbes de leurs satellites : les parallaxes du soleil et de la lune, et l'ellipticité même du sphéroïde terrestre, se sont manifestées dans les inégalités lunaires; car on a vu précédemment que la lune, par son mouvement, décèle à l'Astronomie perfectionnée, l'aplatissement de la terre dont elle fit connaître la rondeur aux premiers Astronomes, par ses éclipses: Enfin, par une combinaison heureuse de l'analyse avec les observations, la lune qui semble avoir été donnée à la terre, pour l'éclairer pendant les nuits, est encore devenue le guide le plus assuré du navigateur qu'elle garantit des dangers auxquels il fut exposé long-temps par les erreurs de son estime. La perfection de la théorie lunaire, à laquelle il doit ce précieux avantage, et celui de fixer avec exactitude la position des lieux où il attère, est le fruit des travaux des Géomètres, depuis un demi-siècle; et pendant ce court intervalle, la géographie accrue par l'usage des Tables lunaires et des montres marines, a fait plus de progrès, que dans tous les siècles précédens. Ces théories sublimes réunissent ainsi tout ce qui peut donner du prix aux découvertes;

la grandeur et l'utilité de l'objet, la fécondité des résultats, et le mérite de la difficulté vaineue.

Il a fallu pour y parvenir, perfectionner à-la-fois, la mécanique, l'optique et l'analyse, qui sont principalement redevables de leurs accroissemens rapides, aux besoins de la physique céleste. On pourra la rendre encore plus exacte et plus simple; mais la postérité verra sans doute avec reconnaissance, que les Géomètres modernes ne lui auront transmis aucun phénomène astronomique dont ils n'aient déterminé les lois et la cause. On deit à la France, la justice d'observer que si l'Angleterre a eu l'avantage de donner naissance à la découverte de la pesanteur universelle; c'est principalement aux Géomètres français, et aux encouragemens de l'Académie des Sciences, que sont dus les nombreux développemens de cette découverte, et la révolution qu'elle a produite dans l'Astronomie.

L'attraction régulatrice du mouvement et de la figure des corpscélestes, n'est pas la seule qui existe entre leurs molécules : effes obéissent encore à des forces attractives dont dépend la constitution intime des corps, et qui ne sont sensibles qu'à des distances imperceptibles à nos sens. Newton a donné le premier exemple du calcul de ce genre de forces, en démontrant que dans le passage de la lumière, d'un milieu transparent dans un autre, l'attraction des milieux la réfracte de manière que les sinus de réfraction et d'incidence, sont toujours en raison constante; ce que l'expérience avait déjà fait connaître. Il a de plus entrevu que les phénomènes capillaires sont dus à l'action de semblables forces; mais les explications qu'il en a données, sont peu satisfaisantes, et la théorie mathématique de ces phénomènes est l'ouvrage de ses successeurs.

CHAPITRE VI

Considérations sur le Système du Monde, et sur les progrès futurs de l'Astronomie.

A referons présentement nos regards sur la disposition du système solaire, et sur ses rapports ayec les étoiles. Le globe immense du soleil, foyer principal de ses mouvemens divers, tourne en vingtcing jours et demi sur lui-même : sa surface est recouverte d'un océan de matière lumineuse dont les vives effervescences forment des taches variables, souvent très nombreuses, et quelquefois plus larges que la terre. An-dessus de cet océan, s'élève une vaste atmosphère : c'est au-delà que les planètes avec leurs satellites, se meuvent dans des orbes presque circulaires, et sur des plans peu inclinés à l'équateur solaire. D'innombrables comètes, après s'être approchées du soleil, s'en éloignent à des distances qui prouvent que son empire s'étend beaucoup plus loin que les limites connues du système planétaire. Non-seulement cet astre agit par son attraction sur tous ces globes, en les forçant à se mouvoir autour de lui; mais il répand sur eux, sa lumière et sa chaleur. Son action bienfaisante fait éclore les animaux et les plantes qui couvrent la terre, et l'analogie nous porte à croire qu'elle produit de semblables effets sur les planètes; car il n'est pas naturel de penser que la matière dont nous voyons la fécondité se développer en tant de façons, est stérile sur une aussi grosse planète que Jupiter qui, comme le globe terrestre; a ses jours, ses nuits et ses années, et sur loquel les observations indiquent des changemens qui supposent des forces très-actives. L'homme fait pour la température dont il jouit sur la terre, ne pourrait pas, selon toute apparence, vivre sur les autres planètes : mais ne doit-il pas y avoir une infinité d'organisations relatives aux diverses températures des globes de cet univers? Si la seule différence des élémens et des climats, met tant de variété dans les productions terrestres; combien plus doivent différer celles des diverses planètes et de leurs satellites? L'imagination la plus active ne peut s'en spruer aucune idée; mais leur existence est, au moins, fort vraisemblable.

Quoique les élémens du système des planètes, soient arbitraires; cependant, ils ont entre eux, des rapports qui peuvent nous éclairer sur son origine. En le considérant avec attention, on est étonné de voir toutes les planètes se mouvoir autour du soleil, d'occident en orient, et presque dans le même plan; les satellites en mouvement autour de leurs planètes, dans le nième sens et à peu près dans le même plan que les planètes; enfin; le soleil, les planètes et les satellites dont on a observé les mouvemens de retation, tournant sur eux-mêmes, dans le sens et à peu près dans le plan de leurs mouvemens de projection.

Un phénomène aussi extraordinaire n'est point l'effet du hasard: il indique une cause générale qui a déterminé tous ces mouvemens. Pour avoir par approximation, la probabilité avec laquelle cette cause est indiquée; nous remarquerons que le système planétaire; tel que nous le connaissons aujourd'hui, est composé d'onze planètes et de dix-huit satellites. On a observé les mouvemens de rotation du soleil, de six planètes, de la lune, des satellites de Jupiter, de l'anneau de Saturne et d'un de ses satellites: Ces mouvemens. avec ceux de révolution, forment un ensemble de quarante-trois mouvemens dirigés dans le même sens; du moins, lorsqu'on les rapporte au plan de l'équateur solaire, auquel il paraît naturel de les comparer. Si l'on conçoit le plan d'un mouvement quelconque direct, couché d'abord sur celui de cet équateur, s'inclinant ensuite à ce dernier plan, et parcourant tous les degrés d'inclinaison, depuis zero jusqu'à la demi-circonférence, il est cleir que le mouvement sera direct dans toutes les inclinaisons inférieures à cent degrés, et qu'il sera rétrograde dans les inclinaisons au dessus; ensorté que par le changement seul d'inclinaison, on peut représenter les mouvemens directs et rétrogrades. Le système planétaire envisagé sous ce point de vue, nous offre done quarante deux

mouvemens dont les plans sont inclinés à celui de l'équateur solaire, tout au plus, d'un angle droit. Il y a plus de quatre mille milliards à parier contre un, que cette disposition n'est point l'effet du hasard; ce qui forme une probabilité bien supérieure à celle des événemens les plus certains de l'histoire, sur lesquels nous ne nous permettons aucun doute. Nous devons donc croire, au moins avec la même confiance, qu'une cause primitive a dirigé les mouvemens planétaires; surtout si nous considérons que l'inclinaison du plus grand nombre de ces mouvemens à l'équateur solaire, est peu considérable et fort au-dessous du quart de la circonférence.

Un autre phénomène également remarquable du système solaire. est le peu d'excentricité des orbes des planètes et des satellites. tandis que ceux des comètes sont fort alongés; les orbes de ce système n'offrant point de nuances intermédiaires entre une grande et une petite excentricité. Nous sommes encore forcés de reconnaître ici l'effet d'une cause régulière : le hasard n'eût point donné une forme presque circulaire aux orbes de toutes les planètes; il est donc nécessaire que la cause qui a déterminé les mouvemens de ces corps, les ait rendus presque circulaires. Il faut encore que la grande excentricité des orbes des comètes, et la direction de leur mouvement dans tous les sens, soient des résultats nécessaires de l'existence de cette cause; car en regardant les orbes des comètes rétrogrades, comme étant inclinés de plus de cent degrés, à l'écliptique: on trouve que l'inclinaison moyenne des orbes de toutes les comètes observées, approche de cent degrés, comme cela doit être. si ces corps ont été lancés au hasard.

Ainsi, l'on a pour remonter à la cause des mouvemens primitifs du système planétaire, les cinq phénomènes suivans : les mouvemens des planètes dans le même sens, et à peu près dans un même plan; les mouvemens des satellites dans le même sens que ceux des planètes; les mouvemens de rotation de ces différens corps et du soleil, dans le même sens que leurs mouvemens de projection et dans des plans peu différens; le peu d'excentricité des orbes des planètes et des satellites : enfin, la grande excentricité des orbes des comètes, quoique leurs inclinaisons aient été abandonnées au hasard.

Buffon est le seul que je connaisse, qui depuis la découverte du vrai système du monde, ait essayé de remonter à l'origine des planètes et des satellites. Il suppose qu'une comète, en tombant sur le soleil, en a chassé un torrent de matière qui s'est réunie au loin, en divers globes plus ou moins grands, et plus ou moins éloignés de cet astre : ces globes devenus par leur refroidissement opaques et solides, sont les planètes et leurs satellites.

Cette hypothèse satisfait au premier des cinq phénomènes précédens; car il est clair que tous les corps ainsi formés doivent se mouvoir à peu près dans le plan qui passait par le centre du soleil, et par la direction du torrent de matière qui les a produits : les quatre autres phénomènes me paraissent inexplicables par son moyen. À la vérité, le mouvement absolu des molécules d'une planète, doit être alors dirigé dans le sens du mouvement de son centre de gravité; mais il ne s'ensuit point que le mouvement de rotation de la planète soit dirigé dans le même sens : ainsi, la terre pourrait tourner d'orient en occident, et cependant le mouvement absolu de chacune de ses molécules serait dirigé d'occident en orient; ce qui doit s'appliquer au mouvement de révolution des satellites, dont la direction, dans l'hypothèse dont il s'agit, n'est pas nécessairement la même que celle du mouvement de projection des planètes.

Un phénomène, non-seulement très-difficile à expliquer dans cette hypothèse, mais qui lui est contraire, est le peu d'excentricité des orbes planétaires. On sait par la théorie des forces centrales, que si un corps mu dans un orbe rentrant autour du soleil, rase la surface de cet astre, il y reviendra constamment à chacune de ses révolutions; d'où îl suit que si les planètes avaient été primitivement détachées du soleil, elles le toucheraient à chaque retour vers cet astre, et leurs orbes loin d'être circulaires, seraient fort excentriques. Il est vrai qu'un torrent de matière, chassé du soleil, ne peut pas être exactement comparé à un globe qui rase sa surface: l'impulsion que les parties de ce torrent, reçoivent les unes des autres, et l'attraction réciproque qu'elles exercent entre elles, peut, en changeant la direction de leurs mouvemens, éloigner leurs périhélies, du soleil. Mais leurs orbes devraient toujours être fort excentriques, ou du moins, ils n'auraient pu avoir tous, de petites

excentricités, que par le hasard le plus extraordinaire. Enfin, on ne voit point dans l'hypothèse de Buffon, pourquoi les orbes de près de cent comètes déjà observées, sont tous fort alongés; cette hypothèse est donc très-éloignée de satisfaire aux phénomènes précédens. Voyons s'il est possible de s'élever à leur véritable cause.

Quelle que soit sa nature, puisqu'elle a produit ou dirigé les mouvemens des planètes, il faut qu'elle ait embrassé tous ces corps; et vu la distance prodigieuse qui les sépare, elle ne peut avoir été qu'un fluide d'une immense étendue. Pour leur avoir donné dans le même sens, un mouvement presque circulaire autour du soleil; il faut que ce fluide ait environné cet astre, comme une atmosphère. La considération des mouvemens planétaires nous conduit donc à penser qu'en vertu d'une chaleur excessive, l'atmosphère du soleil s'est primitivement étendue au-delà des orbes de toutes les planètes, et qu'elle s'est resserrée successivement, jusqu'à ses limites actuelles.

Dans l'état primitif où nous supposons le soleil, il ressemblait aux nébuleuses que le télescope nous montre composées d'un noyau plus ou moins brillant, entouré d'une nébulosité qui, en se condensant à la surface du noyau, le transforme en étoile. Si l'on conçoit, par analogie, toutes les étoiles formées de cette manière; on peut imaginer leur état antérieur de nébulosité, précédé lui-même par d'autres états dans lesquels la matière nébuleuse était de plus en plus diffuse, le noyau étant de moins en moins lumineux. On arrive ainsi, en remontant aussi loin qu'il est possible, à une nébulosité tellement diffuse, que l'on pourrait à peine, en soupçonner l'existence.

'Tel est, en effet, le premier état des nébuleuses qu'Herschell a observées avec un soin particulier, au moyen de ses puissans télescopes, et dans lesquelles il a suivi les progrès de la condensation, non sur une seule, ces progrès ne pouvant devenir sensibles pour nous, qu'après des siècles; mais sur leur ensemble; à peu près, comme on peut dans une vaste forêt, suivre l'accroissement des arbres, sur les individus de divers ages, qu'elle renferme. Il a d'abord observé la matière nébuleuse répandue en amas divers, dans les différentes parties du ciel dont elle occupe une grande étendue. Il a vu dans quelques - uns de ces amas, cette matière faiblement

condensée autour d'un ou de plusieurs noyaux peu brillans. Dans d'autres nébuleuses, ces noyaux brillent davantage relativement à la nébulosité qui les environne. Les atmosphères de chaque noyau, venant à se séparer par une condensation ultérieure, il en résulte des nébuleuses multiples formées de noyaux brillans très-voisins, et environnés, chacun, d'une atmosphère: quelquefois, la matière nébuleuse, en se condensant d'une manière uniforme, a produit les nébuleuses que l'on nomme planétaires. Enfin, un plus grand degré de condensation, transforme toutes ces nébuleuses, en étoiles. Les nébuleuses classées d'après cette vue philosophique, indiquent avec une extrême vraisemblance, leur transformation future en étoiles, et l'état antérieur de nébulosité, des étoiles existantes. Les considérations suivantes viennent à l'appui des preuves tirées de ces analogies.

Depuis long-temps, la disposition particulière de quelques étoiles visibles à la vue simple, a frappé des observateurs philosophes. Mitchel a déjà remarqué combien il est peu probable que les étoiles des Pléiades, par exemple, aient été resserrées dans l'espace étroit qui les renferme, par les seules chances du hasard; et il en a conclu que ce groupe d'étoiles, et les groupes semblables que le ciel nous présente, sont les effets d'une cause primitive, ou d'une loi générale de la nature. Ces groupes sont un résultat nécessaire de la condensation des nébuleuses à plusieurs noyaux; car il est visible que la matière nébuleuse étant sans cesse attirée par ces noyaux divers, ils doivent former à la longue, un groupe d'étoiles, pareil à celui des Pléiades. La condensation des nébuleuses à deux noyaux, formera semblablement des étoiles très - rapprochées, tournant l'une autour de l'autre, telles que les étoiles doubles dont on a déjà reconnu les mouvemens respectifs.

Ainsi l'on redescend par le progrès de la condensation de la matière nébuleuse, à la considération du soleil environné autrefois d'une vaste atmosphère, considération à laquelle on remonte, comme on l'a vu, par l'examen des phénomènes du système solaire. Une rencontre aussi remarquable, en suivant des routes opposées, donne à l'existence de cet état antérieur du soleil, une probabilité fort approchante de la certitude.

Si toutes les molécules d'un amas de matière lumineuse se réunissent à la longue, par l'effet de leur condensation, dans une seule masse figuide ou solide : cette masse aura un mouvement de rotation dont l'équateur sera le plan primitif du maximum des aires, passant par le centre commun de gravité; et la rotation serà telle que la somme des aires projetées sur ce plan, se conservera la même qu'à. l'origine; d'où il suit que si toutes les molécules partent de l'état du repos, le corps qu'elles formeront enfin, sera immobile. Mais il n'en serait pas de même, si ces molécules formaient plusieurs noyaux, qui pourraient alors avoir des mouvemens de rotation, pourvu que ces mouvemens dirigés dans des sens différens, fussent tels que la somme des aires décrites par les rayons vecteurs de tous ces corps, autour d'un point quelconque, soit constamment nulle. Car il n'est pas vrai de dire, comme l'ont avancé plusieurs philosophes, que l'attraction mutuelle d'un système de corps primitivement immobiles, doive à la longue, les réunir tous à l'état du repos, autour de leur centre commun de gravité. Si l'on imagine en effet, trois corps sans mouvement, dont deux soient beaucoup plus grands que le troisième; il est facile de voir que l'on peut donner à ce dernier corps, une infinité de situations telles qu'après la réunion des deux premiers, il continue de circuler sans cesse autour de leur centre commun de gravité. Le cas dans lequel un système de molécules primitivement en repos, et abandonnées à leur attraction mutuelle, finirait par former une masse immobile, est infiniment peu probable. La force vive du système, mile d'abord, s'accroît par le rapprochement des molécules, et devient très-grande, si les mouvemens du système n'éprouvent point de changemens brusques. Les seuls élémens qui, doivent être toujours nuls, sont le mouvement du centre de gravité, et la somme des aires décrites autour de ce point, par toutes les molécules projetées sur un plan quelconque. Ainsi l'attraction seule suffit pour expliquer tous les mouvemens de cet univers.

Mais comment l'atmosphère solaire a-t-elle déterminé les mouvemens de rotation et de révolution des planètes et des satellites? Si ces corps avaient pénétré profondément dans cette atmosphère, sa résistance les aurait fait tomber sur le soleil; on peut donc conjecturer que les planètes ont été formées à ses limites successives, par la condensation des zônes de vapeurs, qu'elle a dû en se refroidissant, abandonner dans le plan de son équateur:

Rappelons les résultats que nous avons donnés dans le dixième chapitre du livre précédent. L'atmosphère du soleil ne peut pas s'étendre indéfiniment: sa limite est le point où la force centrifuge due à son mouvement de rotation balance la pesanteur; or à mesure que le refroidissement resserve l'atmosphère, et condense à la surface de l'astre, les molécules qui en sont voisines, le mouvement de rotation augmente; car en vertu du principe des aires, la somme des aires décrites par le rayon veoteur de chaque molécule du soleil et de son atmosphère, et projetées sur le plan de son équateur; étant toujours la même; la rotation doit être plus prompte, quand ces molécules se rapprochent du centre du soleil. La force centrifuge due à ce mouvement, devenant ainsi plus grande; le point où la pesanteur lui est égale, est plus près de ce centre. En supposant donc, ce qu'il est naturel d'admettre, que l'atmosphère s'estiétendue à une époque quelconque, jusqu'à sa limite; elle a dû, en se refroidissant, abandonner les molécules situées à cette limite et aux limites successives produites par l'accroissement de la rotation du soleil. Ces molécules abandonnées ont continué de circuler autour de cet astre, puisque leur force centrifuge était balancée par leur pesanteur. Mais cette égalité n'ayant point lieu par rapport aux molécules atmosphériques placées sur les parallèles à l'équateur solaire, celles-ei se sont rapprochées par leur pesanteur, de l'atmosphère, à mesure qu'elle se condensait, et elles n'ont cessé de lui appartenir, qu'autant que par ce mouvement, elles se sont rapprochées de cet équateur.

Considérons maintenant les zones de vapeurs, successivement abandonnées. Ces zones ont dû, selon toute vraisemblance, former par leur condensation et l'attraction mutuelle de leurs molécules, divers anneaux concentriques de vapeurs, circulans auteur du soleil. Le frottement mutuel des molécules de chaque anneau a dû accélérer les unes et retarder les autres, jusqu'à ce qu'elles aient acquis un même mouvement angulaire. Ainsi les vitesses réelles des molécules plus éloignées du centre de l'astre, ont été plus grandes. La cause suivante a dû contribuer encore à cette différence

de vitesses. Les molécules les plus distantes du soleil, et qui par les effets du refroidissement et de la condensation, s'en sont rapprochées pour former la partie supérieure de l'anneau, ont toujours décrit des aires proportionnelles aux temps, puisque la force centrale dont elles étaient animées, a été constamment dirigée vers cet astre; or cette constance des aires exige un accroissement de vîtesse, à mesure qu'elles s'en sont rapprochées. On voit que la même cause a dû diminuer la vîtesse des molécules qui se sont élevées vers l'anneau, pour former sa partie inférieure.

Si toutes les molécules d'un anneau de vapeurs, continuaient de se condenser sans se désunir ; elles formeraient à la longue, un anneau liquide ou solide. Mais la régularité que cette formation exige dans toutes les parties de l'anneau et dans leur refroidissement, a dû rendre ce phénomène extrêmement rare. Aussi le sytème solaire n'en offre-t-il qu'un seul exemple, celui des anneaux de Saturne. Presque toujours, chaque anneau de vapeurs a dû se rompre en plusieurs masses qui, mues avec des vîtesses très-peu différentes, ont continué de circuler à la même distance autour du soleil. Ces masses ont dû prendre une forme sphéroidique, avec un mouvement de rotation dirigé dans le sens de leur révolution, puisque leurs molécules inférieures avaient moins de vitesse réelle que les supérieures; elles ont donc formé autant de planètes à l'état de vapeurs. Mais si l'une d'elles a été assez puissante, pour réunir successivement par son attraction, toutes les autres autour de son centre : l'anneau de vapeurs aura été ainsi transformé dans une seule masse sphéroidique de vapeurs, circulante autour du soleil, avec une rotation dirigée dans le sens de sa révolution. Ce dernier cas a été le plus commun : cependant le système solaire nous offre le premier cas, dans les quatre petites planètes qui se meuvent entre Jupiter et Mars; à moins qu'on ne suppose avec Olbers, qu'elles formaient primitivement une soule planète, qu'une forte explosion a divisée en plusieurs parties animées de vîtosses différentes.

Maintenant, si nous suivons les changemens qu'un refroidissement ultérieur a dû produire dans les planètes en vapeurs, dont nous venons de concevoir la formation; nous verrons naître au centre de chacune d'elles, un noyau s'accroissant sans cesse, par

la condensation de l'atmosphère qui l'environne. Dans cet état. La planète ressemblait parsaitement au soleil à l'état de nébuleuse, où nous venons de le considérer ; le refroidissement a donc dû produire aux diverses limites de son atmosphère, des phénomènes semblables à ceux que nous avons décrits, c'est-à-dire des anneaux et des satellites circulant autour de son centre, dans le sens de son mouvement de rotation, et tournant dans le même sens sur eux-mêmes. La distribution régulière de la masse des anneaux de Saturne, autour de son centre, et dans le plan de son équateur, résulte naturellement de cette hypothèse, et sans elle, devient inexplicable : ces anneaux me paraissent être des preuves toujours subsistantes de l'extension primitive de l'atmosphère de Saturne, et de ses retraites successives. Ainsi les phénomènes singuliers du peu d'excentricité des orbes des planètes et des satellites, du peu d'inclinaison de ces orbes à l'équateur solaire, et de l'identité du sens des mouvemens de rotation et de révolution de tous ces corps, avec celui de la rotation du soleil, découlent de l'hypothèse que nous proposons, et lui donnent une grande vraisemblance.

Si le système solaire s'était formé avec une parfaite régularité; les orbites des corps qui le composent, seraient des cercles dont les plans ainsi que ceux des divers équateurs et des anneaux coïncideraient avec le plan de l'équateur solaire. Mais en conçoit que les variétés sans nombre qui ont dû exister dans la température et la densité des diverses parties de ces grandes masses, ont produit les excentricités de leurs orbites, et les déviations de leurs mouvemens, du plan de cet équateur.

Dans notre hypothèse, les comètes sont étrangères au système planétaire. En attachant leur formation à celle des nébuleuses, on peut les regarder comme de petites nébuleuses errantes de systèmes en systèmes solaires, et formées par la condensation de la matière nébuleuse répandue avec tant de profusion dans l'univers. Les comètes seraient ainsi par rapport à notre système, ce que les aérolithes sont relativement à la terre à laquelle ils paraissent étrangers. Lorsque ces astres deviennent visibles pour nous, ils offrent une ressemblance si parfaite avec les nébuleuses, qu'on les confond souvent avec elles; et ce n'est que par leur mouvement, ou par la connaissance

de toutes les nébuleuses renfermées dans la partie du ciel où ils se montrent, qu'on parvient à les en distinguer. Cette hypothèse explique d'une manière heureuse, la grande extension que prennent les têtes et les queues des comètes, à mesure qu'elles approchent du soleil, et l'extrême rareté de ces queues qui, malgré leur immense profondeur, n'affaiblissent point sensiblement l'éclat des étoiles que l'on voit à trayers.

Lorsque les petites nébuleuses parviennent dans la partie de l'espace où l'attraction du soleil est prédominante, et que nous nommerons sphère d'activité de cet astre; il les force à décrire des orbes elliptiques ou hyperboliques. Mais leur vitesse étant également possible suivant toutes les directions, elles doivent se mouvoir indifféremment dans tous les sens et sous toutes les inclinaisons à l'écliptique; ce qui est conforme à ce que l'on observe. Ainsi la condensation de la matière nébuleuse, par laquelle nous venons d'expliquer les mouvemens de rotation et de révolution des planètes et des satellites dans le même sens et sur des plans peu différens, explique également pourquoi les mouvemens des comètes s'écartent de cette loi générale.

La grande excentricité des orbes cométaires, est encore un résultat de notre hypothèse. Si ces orbes sont elliptiques, ils sont trèsalongés, puisque leurs grands axes sont au moins égaux au rayon de la sphère d'activité du soleil. Mais ces orbes peuvent être hyperboliques, et si les axes de ces hyperboles ne sont pas très-grands par rapport à la moyenne distance du soleil à la terre, le mouvement des comètes qui les décrivent, paraîtra sensiblement hyperbolique-Cependant, sur cent comètes dont on a déjà les élémens, aucune n'a paru se mouvoir dans une hyperbole; il faut donc que les chances qui donnent une hyperbole sensible, soient extrêmement rares par rapport aux chances contraires. Les comètes sont si petites, qu'elles ne deviennent visibles, que lorsque leur distance périhélie est peu considérable. Jusqu'à présent, cette distance n'a surpassé que deux fois le diamètre de l'orbe terrestre, et le plus souvent, elle a été au-dessous du rayon de cet orbe. On conçoit que pour approcher si près du soleil, leur vitesse au moment de leur entrée dans sa sphère d'activité, doit avoir une grandeur et une direction comprises

dans d'étroites limites. En déterminant par l'analyse des probabilités, le rapport des chances qui dans ces limites, donnent une hyperbole sensible, aux chances qui donnent un orbe que l'on puisse confondre avec une parabole; j'ai trouvé qu'il y a six mille au moins à parier contre l'unité, qu'une nébuleuse qui pénètre dans la sphère d'activité du soleil, de manière à pouvoir être observée, décrira ou une ellipse très-alongée, ou une hyperbole qui par la grandeur de son axe, se confondra sensiblement avec une parabole, dans la partie que l'on observe; il n'est donc pas surprenant que jusqu'ici, l'on n'ait point reconnu de mouvemens hyperboliques.

L'attraction des planètes, et peut-être encore la résistance des milieux éthérés a dû changer plusieurs orbes cométaires, dans des ellipses dont le grand axe est beaucoup moindre que le rayon de la sphère d'activité du soleil. On peut croire que ce changement a eu lieu pour l'orbe de la comète de 1759, dont le grand axe ne surpasse que trente-cinq fois, la distance du soleil à la terre. Un changement plus grand encore est arrivé à l'orbe de la comète de 1770, dont le grand axe n'égale que six fois cette distance.

Si quelques comètes ont pénétré dans les atmosphères du soleil et des planètes au temps de leur formation, elles ont dû en décrivant des spirales, tomber sur ces corps, et par leur chute, écarter les plans des orbes et des équateurs des planètes, du plan de l'équateur solaire.

Si dans les zones abandonnées par l'atmosphère du soleil, il s'est trouvé des molécules trop volatiles pour s'unir entre elles ou aux planètes; elles doivent en continuant de circuler autour de cet astre offrir toutes les apparences de la lumière zodiacale, sans opposer de résistance sensible aux divers corps du système planétaire, soit à cause de leur extrême rareté, soit parce que leur mouvement est à fort peu près le même que celui des planètes qu'elles rencontrent.

L'examen approfondi de toutes les circonstances de ce système accroît encore la probabilité de notre hypothèse. La fluidité primitive des planètes est clairement indiquée par l'aplatissement de leur figure, conforme aux lois de l'attraction mutuelle de leurs molécules : elle est de plus prouvée pour la terre, par la diminution régu lière de la pesanteur, en allant de l'équateur aux pôles. Cet état de fluidité

primitive, auquel on est conduit par les phénomènes astronomiques, doit se manifester dans ceux que l'histoire naturelle nous présente Mais pour l'y retrouver, il est nécessaire de prendre en considération, l'immense variété des combinaisons formées par toutes les substances terrestres mêlées dans l'état de vapeurs, lorsque l'abaissement de la température, a permis à leurs élémens de s'unir; il faut ensuite considérer les prodigieux changemens que cet abaissement a dû successivement amener dans l'intérieur et à la surface de la terre, dans toutes ses productions, dans la constitution et la pression de l'atmosphère, dans l'océan et les corps qu'il a tenus en dissolution. Enfin, il faut avoir égard aux changemens brusques, tels que de grandes éruptions volcaniques, qui ont dû troubler à diverses, époques, la régularité de ces changemens. La Géologie suivie sous ce point de vue qui la rattache à l'Astronomie, pourra sur beaucoup d'objets, en acquérir la précision et la certitude.

Un des phénomènes les plus singuliers du système solaire, est l'égalité rigoureuse que l'on observe entre les mouvemens angulaires de rotation et de révolution de chaque satellite. Hey a l'infini contre un à parier qu'il n'est point l'effet du hasard. La théorie de la pesanteur universelle fait disparaître l'infini, de cette invraisemblance, en nous montrant qu'il suffit pour l'existence du phénomène, qu'à l'origine, ces mouvemens aient été très-peu différens. Alors, l'attraction de la planète a établi entre eux, une parfaite égalist; mais en même temps, elle a donné naissance à une oscillation périodique dans l'axe du satellite, dirigé vers la planète, oscillation dont l'étendue dépend de la différence primitive des deux mouvemens. Les observations de Mayer sur la libration de la lune, et celles que Bouvard vient de faire sur le même objet, à ma prière, n'ayant point fait reconnaître cette oscillation, la différence dont elle dépend, doit être très-petite; ce qui indique avec une extrême vraisemblance, une cause spéciale qui d'abord a renfermé cette différence dans les limites fort resserrées où l'attraction de la planète a pu établir entre les mouvemens moyens de rotation et de révolution, une égalité rigoureuse, et qui ensuite a fini par détruire l'oscillation que cette égalité a fait naître. L'un et l'autre de ces effets résultent de notre hypothèse; car on conçoit que la lune à l'état de vapeurs, formait

par l'attraction puissante de la terre, un sphéroïde alongé dont le grand axe devait être dirigé sans cesse vers cette planète, par la facilité avec laquelle les vapeurs cèdent aux plus petites forces qui les animent. L'attraction terrestre continuant d'agir de la même manière, tant que la lune a été dans l'état de vapeurs, ou liquide; elle a dû à la longue, en rapprochant sans cesse les deux mouvemens de ce satellite, faire tomber leur différence, dans les limites où commence à s'établir leur égalité rigoureuse. Ensuite, cette attraction a dû anéantir peu à peu l'oscillation que cette égalité a produite dans le grand axe du sphéroïde, dirigé vers la terre. C'est ainsi que les fluides qui recouvrent cette planète, ont détruit par leur frottement et leur résistance, les oscillations primitives de son axe de rotation, qui maintenant n'est plus assujéti qu'à la nutation résultante des actions du soleil et de la lune. Il est facile de se convaincre que l'égalité des mouvemens de rotation et de révolution des satellites. a du mettre obstacle à la formation d'anneaux et de satellites secondaires, par les atmosphères de ces corps. Aussi l'observation. n'a-t-elle jusqu'à présent, rien indiqué de semblable.

Les mouvemens des trois premiers satellites de Jupiter présentent. un phénomène plus extraordinaire encore que le précédent; et qui consiste en ce que la longitude moyenne du premier, moins trois fois celle du second, plus deux fois celle du troisième, est de tamment égale à deux angles droits. Il y a l'infini contre un à parier que cette égalité n'est point due au hasard. Mais on a vu que pour la produire, il a suffi qu'à l'origine, les moyens mouvemens de ces trois corps, aient fort approché de satisfaire au rapport qui rend nul, le moyen mouvement du premier, moins trois fois celui du second, plus deux fois celui du troisième. Alors leur attraction mutuelle a établi rigoureusement ce rapport; et de plus, elle a rendu constamment égale à la demi-circonférence, la longitude moyenne du premier satellite, moins trois fois celle du second, plus deux fois celle du troisième. En même temps, elle a donné naissance à une inégalité périodique qui dépend de la petite quantité dont les moyens mouvemens s'écartaient primitivement du rapport que nous venons d'énoncer. Quelques soins que Delambre ait mis à reconnaître cette inégalité par les observations, il n'a pu y parvenir; ce qui prouve

son extrême petitesse, et ce qui, par conséquent, indique avec une très-grande vraisemblance, une cause qui l'a fait disparaître. Dans notre hypothèse, les satellites de Jupiter, immédiatement après leur formation, ne se sont point mus dans un vide parfait : les molécules les moins condensables des atmosphères primitives du soleil et de la planète, formaient alors un milieu rare dont la résistance différente pour chacun de ces astres, a pu approcher peu à peu, leurs moyens mouvemens, du rapport dont il s'agit; et lorsque ces mouvemens ont ainsi atteint les conditions requises pour que l'attraction mutuelle des trois satellites établisse ce rapport en rigueur, la même résistance a diminué sans cesse l'inégalité que ce rapport a fait naître, et enfin l'a rendue insensible. On ne peut mieux comparer ces effets, qu'au mouvement d'un pendule animé d'une grande vîtesse, dans un milieu très-peu résistant. Il décrira d'abord un grand nombre de circonférences; mais à la longue, son mouvement de circulation toujours décroissant, se changera dans un mouvement d'oscillation, qui diminuant lui-même de plus en plus, par la résistance du milieu, finira par s'anéantir : alors le pendule arrivé à l'état du repos, y restera sans cesse.

Quoi qu'il en soit de ces conjectures sur la formation des étoiles et du système solaire, conjectures que je présente avec la défiance que doit inspirer tout ce qui n'est point un résultat de l'observation ou du calcul; il est certain que les élémens de ce système, sont ordonnés de manière qu'il doit jouir de la plus grande stabilité, si des causes étrangères ne viennent point la troubler, Par cela seul que les mouvemens des planètes et des satellites sont presque circulaires et dirigés dans le même sens et dans des plans peu différens, ce système ne fait qu'osciller autour d'un état moyen dont il ne s'écarte jamais que de quantités très-petites. Les moyens mouvemens de rotation et de révolution de ces divers corps sont uniformes, et leurs distances moyennes aux foyers des forces principales qui les animent, sont constantes : toutes les inégalités séculaires sont périodiques. Les plus considérables sont celles qui affectent les mouvemens de la lune par rapport à son périgée, à ses nœuds et au soleil : elles s'élèvent à plusieurs circonférences; mais après un très-grand nombre de siècles, elles se rétablissent,

Dans ce long intervalle, toutes les parties de la surface hunaire se présentaraient successivement à la terre, sans l'attraction du sphéroïde terrestre, qui faisant participer la rotation de la lune, à ces grandes inégalités, ramène sans cesse vers nous le même hémisphère de ce satellite, et rend l'autre hémisphère invisible à iamais. C'est ainsi que l'attraction réciproque des trois premiers satellites de Jupiter a primitivement établi et maintient le beau rapport qui existe entre leurs moyens mouvemens, rapport d'après lequel l'un d'eux au moins, doit églairer pendant les nuits, les horizons de Jupiter. En vertu des attractions célestes, la grandeur de l'année sur chaque planète, est toujours la même : le changement des inclinaisons de son orbite à son équateur, renfermé dans d'étroites limites, ne peut apporter que de légères variétés dans la température des saisons. Il semble que la nature ait tout disposé dans le ciel, pour assurer la durée du système planétaire, par des vues semblables à celles qu'elle nous paraît sujvre si admirablement sur la terre, pour la conservation des individus, et la perpétuité des espèces.

Cette considération seule expliquerait la disposition de ce système, si le Géomètre ne devait pas étendre plus loin sa vue, et chercher dans les lois primordiales de la nature, la cause des phénomènes les plus indiqués par l'ordre de l'univers. Déjà quelques-uns d'eux ont été ramenés à ces lois. Aipsi la stabilité des pôles de la terre à sa surface, et celle de l'équilibre des mers, l'une et l'autre si nécessaires à la conservation des êtres organisés, ne sont qu'un simple résultat du mouvement de rotation, et de la pesanteur universelle. Par sa rotation, la terre a été aplatie, et son axe de révolution est devenu l'un des axes principaux autour desquels le mouvement de rotation est invariable. En vertu de la pesanteur, les couches terrestres les plus denses se sont rapprochées du centre de la terre dont la moyenne densité surpasse ainsi, celle des eaux qui la recouvrent; ce qui suffit pour assurer la stabilité de l'équilibre des mers, et mettre un frein à la fureur des flots. Enfin, si les conjectures que je viens de proposer sur l'origine du système planétaire, sont fondées; la stabilité de ce système est encore une suite des lois du mouvement. Ces phénomènes et quelques autres

semblablement expliqués autorisent à penser que tous dépendent de ces lois, par des rapports plus ou moins cachés; mais dont il est plus sage d'avouer l'ignorance, que d'y substituer des causes imaginaires.

Je ne puis m'empécher ici d'observer combien Newton s'est écarté sur ce point, de la méthode dont il a fait d'affleurs, de si heureuses applications. Après avoir exposé dans le scholle qui termine les Principes de la Philosophie naturelle, le phénomène singulier du mouvement des planétes et des satellites, dans le même sens, à peu près dans un même plan, et dans des erbes presque circulaires, il ajoute; « tous ces mouvemens si réguliers n'ont point de causes » mécaniques, puisque les comètes se meuvent dans toutes les » parties du ciel, et dans des orbes fort excentriques..... Cet » admirable arrangement du soléif, des plunètes et des comêtes, ne » peut être que l'ouvrage d'un être intelligent et tout puissant. » H reproduit à la fin de son Optique, la même pensée dans laquelle il se scrait encore plus confirmé, s'il avait su que les conditions de l'arrangement des planètes et des satellités, sont précisément celles qui en assurent la stabilité. « Un destin aveugle, dit-il, né pouvait » jamais faire mouvoir ainsi toutes les planètes, à quelques irrêgu-» larités près à peine remarquables, qui peuvent provenir de l'action » mutuelle des planètes et des comètes, et qui probablement devien-» dront plus grandes par une longue suite de temps, jusqu'à ce qu'ent » fin ce système ait besoin d'être remis en ordre par son auteur. » Mais cet arrangement des planètes, ne peut-il pas être lui-même, un effet des lois du mouvement; et la suprême intelligence que Newton fait intervenir, ne peut-elle pas l'avoir fait dépendre d'un phénomène plus général? Tel est, suivant nous, celui d'une matière nébuleuse éparse en amas divers, dans l'immensité des cieux. Peut-on encore affirmer que la conservation du système planétaire entre dans les vues de l'auteur de la nature? L'attraction mutuelle des corps de ce système ne peut pas en altérer la stabilité, comme Newton le suppose. Mais n'y cût-il dans l'espace céleste, d'autre fluide que la lumière; sa résistance et la diminution que son émission produit dans la masse du soleil, doivent à la longue, détruire l'arrant gement des planètes; et pour le maintenir, une réforme deviendrait

sans doute, nécessaire. Mais tant d'espèces d'animaux, éteintes, dont Cuvier a su reconnaître avec une rare sagacité, l'organisation, dans les nombreux ossemens fossiles qu'il a décrits, n'indiquent-elles pas dans la nature, une tendance à changer les choses même les plus fixes en apparence? La grandeur et l'importance du système solaire ne doivent point le faire excepter de cette loi générale; car elles sont relatives à notre petitesse; et ce système, tout vaste qu'il nous semble, n'est qu'un point insensible dans l'univers. Parcourons l'histoire des progrès de l'esprit humain et de ses erreurs; nous y verrons les causes finales reculées constamment aux bornes de ses connaissances. Ces mêmes causes que Newton transporte aux limites du système solaire, étaient, il n'y a pas long-temps, placées dans l'atmosphère, pour expliquer les météores; elles ne sont donc aux yeux du philosophe, que l'expression de l'ignorance où nous sommes, des véritables causes.

Reportons maintenant nos regards, au-delà du système solaire. sur ces innombrables soleils répandus dans l'immensité de l'espace, à un éloignement de nous, tel que le diamètre entier de l'orbe terrestre, observé de leur centre, serait insensible. L'analogie porte à croire qu'ils sont les foyers d'autant de systèmes planétaires, et cette analogie est confirmée par ce que nous venons d'exposer touchant leur formation. En effet, ces astres doués, ainsi que le soleil, d'un mouvement de rotation, ayant été, comme lui, entourés primitivement d'une vaste atmosphère; il est naturel d'attribuer à sa condensation, les mêmes résultats qu'a produits la condensation de l'atmosphère solaire. Plusieurs étoiles éprouvent dans leur couleur et dans leur clarté, des changemens périodiques remarquables: ils indiquent de grandes taches à leur surface, et des mouvemens de rotation, qui les présentent et les dérobent alternativement à nos yeux. D'autres étoiles ont paru tout-à-coup, et ont ensuite disparu après avoir brillé pendant plusieurs mois, d'une vive lumière. Quels changemens prodigieux ont dû s'opérer à la surface de ces grands corps, pour être aussi sensibles à la distance qui nous en sépare! Combien ils doivent surpasser ceux que nous observons à la surface du soleil, et nous convaincre que la nature est loin d'être toujours, et partout la même! Tous ces astres

devenus invisibles, n'ont point changé de place durant leur apparition. Il existe donc dans l'espace céleste, des corps opaques aussi considérables, et peut-être en aussi grand nombre que les étoiles.

Il paraît que loin d'être disséminées à des distances à peu près égales, les étoiles sont rassemblées en divers groupes dont quelques, uns renferment des milliards de ces astres. C'est encore une suite de l'hypothèse que nous avons proposée sur leur origine. Notre soleil et les plus brillantes étoiles font probablement partie d'un de ces groupes, qui vu du point où nous sommes, semble entourer le ciel et forme la voie lactée. Le grand nombre d'étoiles que l'on aperçoit à-la-fois dans le champ d'un fort télescope dirigé vers cette voie, nous prouve son immense profondeur qui surpasse mille fois la distance de Syrius à la terre ; ensorte qu'il est vraisemblable que les rayons émanés de la plupart de ces étoiles, ont employé un grand nombre de siècles à venir jusqu'à nous. La voie lactée finirait par offrir à l'observateur qui s'en éloignerait indéfiniment, l'apparence d'une lumière blanche et continue, d'un petit diamètre; car l'irradiation qui subsiste même dans les meilleurs télescopes, couvrirait et ferait disparaître l'intervalle des étoiles. Il est donc probable que parmi les nébuleuses, plusieurs sont des groupes d'un très-grand nombre d'étoiles, qui vus de leur intérieur, paraîtraient semblables à la voie lactée. Si l'on réfléchit maintenant à cette profusion d'étoiles et de nébuleuses, répandues dans l'espace céleste, et aux intervalles immenses qui les séparent; l'imagination étonnée de la grandeur de l'univers, aura peine à lui concevoir des bornes.

De ces considérations fondées sur les observations télescopiques, il résulte que le mouvement du système solaire est très-composé. La lune décrit un orbe presque circulaire autour de la terre; mais vue du seleil, elle paraît décrire une suite d'épicycloïdes dont les centres sont sur la circonférence de l'orbe terrestre. Pareillement, la terre décrit un suite d'épicycloïdes dont les centres sont sur la courbe que le soleil décrit autour du centre de gravité du groupe d'étoiles, dont il fait partie. Enfin le soleil décrit lui-même une suite d'épicycloïdes dont les centres sont sur la courbe décrite par le centre de gravité de ce groupe, autour de celui de l'univers. L'Astronomie a déjà fait un grand pas, en nous faisant connaître le

mouvement de la terre, et les épicycloïdes que la lune et les satellites décrivent sur les orbes de leurs planètes respectives. Mais s'il a fallu des siècles pour connaître les mouvemens du système plané. taire, quelle durée prodigieuse exige la détermination des mouvemens du soleil et des étoiles! Déjà les observations commencent à les montrer : leur ensemble paraît indiquer un mouvement général de tous les corps du système solaire, vers la constellation d'Hercule; mais elles semblent prouver en même temps, que les mouvemens apparens des étoiles sont une combinaison de leurs mouvemens

propres avec celui du soleil.

Tous ces grands mouvemens, les parallaxes de ces astres, les révolutions des étoiles multiples autour de leur centre commun de gravité, révolutions très-remarquables, et qui comparées aux parallaxes de ces étoiles, en feront connaître les masses; les variations périodiques de la lumière des étolles changeantes, et les durées de leurs mouvemens de rotation; un catalogue des étoiles qui ne font que paraître, et leur position au moment de leur éclat passager; enfin les changemens successifs de la figure des nébuleuses, déjà sensibles dans quelques-unes, et spécialement dans la belle nébuleuse d'Orion; tels seront relativement aux étoiles, les principaux objets de l'Astronomie future. Ses progrès dépendent de ces trois choses, la mesure du temps, celle des angles, et la perfection des instrumens d'optique. Les deux premières ne laissent maintenant presque rien à desirer; c'est donc principalement vers la troisième que les encouragemens doivent être dirigés; car il n'est pas douteux que si l'on parvient à donner de très-grandes ouvertures, aux lunettes achromatiques, elles feront découvrir dans les cieux, des phénomènes insqu'à présent invisibles, surtout si l'on a soin de les transporter dans l'atmosphère pure et rare des hautes montagnes de l'équateur.

Il reste encore à faire sur notre propre système, de nombreuses découvertes. La planète Uranus et les satellites nouvellement reconnus, donnaient lieu de conjecturer l'existence de quelques planètes jusqu'ici non observées. On avait même soupçonné qu'il devait y en avoir une entre Jupiter et Mars, pour satisfaire à la progression double qui règne à peu près, dans les intervalles des orbes planétaires à celui de Mercure. Ce soupçon a été confirmé

par la découverte de quatre petites planètes qui sont à des distances du soleil, peu différentes de la distance que cette progression assigne à la planète intermédiaire entre Jupiter et Mars. L'action de Jupiter sur ces planètes, accrue par la grandeur des excentricités et des inclinaisons de leurs orbes entrelacés, produit dans leurs mouvemens, des inégalités considérables, qui répandront un nouveau jour sur la théorie des attractions célestes, et donneront lieu de la perfectionner encore. Les élémens arbitraires de cette théorie, et la convergence de ses approximations, dépendent de la précision des observations et du progrès de l'analyse; et par là, elle doit de jour en jour, acquérir plus d'exactitude. Les grandes inégalités séenlaires des corps célestes, résultantes de leurs attractions mutuelles, et que déjà l'observation fait apercevoir, se développeront avec les siècles. Des observations faites avec de puissans télescopes, sur les satellites, perfectionneront les théories de leurs mouvemens. et peut-être en feront découvrir de nouveaux. On déterminera par des mesures précises et multipliées, toutes les inégalités de la figure de la terre, et de la pesanteur à sa surface; et bientôt, l'Europe entière sera couverte d'un réseau de triangles qui feront connaître exactement, la position, la courbure et la grandeur de toutes ses parties. Les phénomènes du flux et du reflux de la mer, et leurs singulières variétés dans les différens ports des deux hémisphères. seront déterminés par une longue suite d'observations, et comparés à la théorie de la pesanteur. Le retour des comètes déjà observées; les nouvelles comètes qui paraîtront; l'apparition de celles qui mues dans des orbes hyperboliques, doivent errer de système en système; les perturbations que tous ces astres font éprouver aux mouvemens planétaires; celles qu'ils éprouvent eux-mêmes, et qui à l'approche d'une grosse planète, peuvent changer entièrement leurs orbites; enfin les altérations que les mouvemens et les orbes des planètes et des satellites reçoivent de la part des étoiles, et peut-être encore. par la résistance des milieux éthérés; tels sont les principaux objets que le système solaire offre aux recherches des Astronomes et des Géomètres futurs.

L'Astronomie, par la dignité de son objet et la perfection de ses théories, est le plus beau monument de l'esprit humain, le titre le

plus noble de son intelligence. Séduit par les illusions des sens et de l'amour-propre, l'homme s'est regardé long-temps, comme le centre du mouvement des astres, et son vain orgueil a été puni par les frayeurs qu'ils lui ont inspirées. Enfin, plusieurs siècles de travaux ont sait tomber le voile qui lui cachoit le système du monde. Alors il s'est vu sur une planète presque imperceptible dans le système solaire dont la vaste étendue n'est elle-même, qu'un point insensible dans l'immensité de l'espace. Les résultats sublimes auxquels cette découverte l'a conduit, sont bien propres à le consoler du rang qu'elle assigne à la terre; en lui montrant sa propre grandeur, dans l'extrême petitesse de la base qui lui a servi pour mesurer les cieux. Conservons avec soin, augmentons le dépôt de ces hautes connaissances, les délices des êtres pensans. Elles ont rendu d'importans services à la Navigation et à la Géographie; mais leur plus grand bienfait est d'avoir dissipé les craintes produites par les phénomènes célestes, et détruit les erreurs nées de l'ignorance de nos vrais rapports avec la nature; erreurs et craintes qui renaîtraient promptement, si le flambeau des sciences yenait à s'éteindre,

NOTE PREMIÈRE.

Le jésuite Gaubil, celui de tous les missionnaires, qui a le mieux connu l'Astronomie chinoise, en a publié séparément l'histoire. Il a traité de nouveau, la partie ancienne de cette histoire, dans le tome XXVI des Lettres édifiantes; et j'ai publié dans la Connaissance des Tems pour l'année 1809, un manuscrit précieux du même jésuite, sur les solstices et les ombres méridiennes du gnomon, observés à la Chine. On voit dans ces ouvrages, que Tcheou-Kong observa les ombres méridiennes d'un gnomon de huit pieds chinois, aux solstices, dans la ville de Loyang, aujourd'hui Honan-Fou dans le Honan. Il traça une méridienne avec soin, et il nivela le terrain sur lequel l'ombre se projetait. Il trouva la longueur de l'ombre méridienne, d'un pied et demi au solstice d'été, et de treize pieds au solstice d'hiver. Pour conclure de ces observations, l'obliquité de l'écliptique; il faut leur appliquer plusieurs corrections. La plus considérable est celle du demi-diamètre du soleil; car il est visible que l'extrémité de l'ombre d'un gnomon, indiquant la hauteur du bord supérieur de cet astre, il faut retrancher son demi-diamètre apparent, de cette hauteur, pour avoir celle de son centre. Il est surprenant que tous les anciens observateurs, ceux même de l'école d'Alexandrie, aient négligé une correction aussi essentielle et aussi simple; ce qui a produit sur leurs latitudes géographiques, des erreurs à peu près égales à la grandeur de ce demi-diamètre. Une seconde correction est relative à la réfraction astronomique qui n'ayant point été observée, peut être supposée sans erreur sensible, correspondre à la température de dix degrés et à la hauteur o^m. 76 du haromètre. Enfin, une troisième correction dépend de la parallaxe du soleil, et réduit ces observations, au centre de la terre. En appliquant ces trois corrections, aux observations précédentes; on trouve la hauteur du centre du soleil, rapportée au centre de la terre, égale à 87°,9049, au solstice d'été; 57

et à 34°,7924, au solstice d'hiver. Ces hauteurs donnent 38°,6513 pour la hauteur du pôle à Loyang, résultat qui tient à peu près le milieu entre les observations des missionnaires jésuites, sur la latitude de cette ville: elles donnent encore 26°,5563 pour l'obliquité de l'écliptique, à l'époque de Tcheou-Kong, époque que l'on peut ici fixer sans erreur sensible, à l'an 1100 avant notre ère. En remontant à cette époque, par la formule du sixième livre de mon Traité de Mécanique céleste; on trouve 26°,5161 pour l'obliquité qui devait alors avoir lieu. La différence 402" paraîtra bien petite; si l'on considère l'incertitude qui existe encore sur les masses des planètes, et celle que présentent les observations du gnomon, surtout à cause de la pénombre qui rend son ombre, mal terminée.

Tcheou-Kong observe encore la position du solstice d'hiver, par rapport aux étoiles; et il la fixe à deux degrés chinois de nu, constellation, chinoise qui commence par e du Verseau. En Chine, la division de la circonférence, ayant été toujours subordonnée à la longueur de l'année, de manière que le soleil décrivit un degré par jour, et l'année à l'épages de Tcheou-Kong, ayant été supposée de 3651 7; deux degrés répondaient à 2,1905 de la division décimale du quant de cercle. Les estres ayant été à la même époque, rapportés. à l'équateun : l'ascension droits de l'étoile était suivant cette observation, de appriacos. Ello devais être par les formules de la Mécanique céleste, de 2089;7265, dans l'année 1100 avant notre ère, Pour faire, disparaître la différence gato,", il suffit de remonter de 54 ans au-delà; ce qui persitra peu considérable, si l'on réfléchit à l'incertitude de l'époque précise des observations de ce grand prince, et surtout à gelle des observations elles-mêmes. Il y en a sur l'instant du solstice; mois la plus grande erreur à craindre, est dans la manière de reprocter le solstice, à l'étoile e du Verseau; soit que Tcheon-Kong ait fait mage de la différence en temps, des passages de l'étoile et du soleil au méridien; soit qu'il ait mesuré la distance, de la lupe à cette étoile, au moment d'une éclipse de lune; deux moyens employés par les Astronemes chinois:

NOTE IL

Les Chaldéens avaient reconnu par une longue suite d'observations, qu'en 19756 jours, la lune faisait 669 révolutions par rapport au soleil; 717 révolutions anomalistiques, c'est-à-dire rapportées aux points de sa plus grande vitesse; et 726 révolutions par rapport à ses nœuds. Ils ajoutaient A de la circonférence, à la position des deux astres, pour avoir dans cet intervalle, 723 révolutions sidérales de la lune, et 54 du seleil. Ptolémée, en exposant cette période, l'attribue aux anciens Astronomes, sans désigner les Chaldéens; mais Géminus, contemporain de Sylla; et dont il nous reste des Élémens d'Astronomie, ne laisse aucun doute à cet égard. Nonseulement il attribue cette période aux Chaldéens, mais il donne leur méthode pour calculer l'anomalie de la lune. Ils suppossient que depuis la plus petite, jusqu'à la plus grande vîtesse de la lune, son mouvement angulaire s'accélérait d'un tiers de degré par jour, pendant une moitié de la révolution anomalistique; et qu'il se ralentissait de la même manière, pendant l'autre moitié. Ils se trompeient, en regardant comme uniformes, des accroissemens qui sont proportionnels au cosinus de la distance de la lune à son périgée : ils se trompaient encore, en élevant à 7-4 l'équation du centre de la lune, qui n'est que de 7°, et même de 5°,56 dans les éclipses. Malgré ces erreurs, la méthode précédente fait honneur à la sagacité des Astronomes chaldéens : c'est le seul monument astronomique de ce genre, qui nous reste, avant la fondation de l'école d'Alexandrie. La période dont on vient de parler, suppose la longueur de l'année sidérale, de 365 ‡ à fort peu près; celle de 365i,2576 qu'Albatenius attribue aux Chaldéens, ne peut donc appartenir qu'à des temps postérieurs à Hipparque.

NOTE III.

Dans le second livre de sa Géographie, chapitre IV, Strabon dit que, suivant Hipparque, la proportion de l'ombre au gnomon à Byzance, est la même que Pythéas prétend avoir observée à Marseille; et dans le chapitre V du même livre, il dit d'après Hipparque, qu'à Byzance, au solstice d'été, la proportion de l'ombre au gnomon, est celle de 42 moins ½ à 120. C'est sans doute, d'après cette observation, que Ptolémée dans le chapitre VI du second livre de l'Almageste, fait passer par Marseille, le parallèle sur lequel la durée du plus long jour de l'année est cinq huitièmes du jour astronomique; ce qui suppose que la proportion de l'ombre méridienne au gnomon, au solstice d'été, est celle de 42 moins 🗄 à 120. Pythéas fut au plus tard, contemporain d'Aristote; ainsi l'on peut sans erreur sensible, rapporter son observation, à l'année 350 avant notre ère. En la corrigeant de la réfraction, de la parallaxe du soleil et de son demi-diamètre; elle donne 21°,6386 pour la distance solsticiale du centre du soleil, au zénith de Marseille. La latitude de l'Observatoire de cette ville, est de 48°,1077: si l'on en retranche la distance précédente, on aura 26,4691 pour l'obliquité de l'écliptique au temps de Pythéas. Cette obliquité comparée à celle du temps de Tcheou-Kong, indique déjà une diminution dans cet élément. Les formules de la Mécanique céleste donnent l'obliquité de l'écliptique, 350 ans avant notre ère, égale à 26°,4095; la différence 596° entre ce résultat et celui de l'observation de Pythéas, est dans les limites des erreurs de ce genre d'observations.

NOTE IV.

HIPPARQUE trouva par la comparaison d'un très-grand nombre d'éclipses de lune, 1° que dans l'intervalle de 126007ⁱ plus \(\frac{1}{24}\) de jour, la lune faisait 4267 révolutions à l'égard du soleil; 4573 révolutions à l'égard de son périgée; et 4612 révolutions relativement aux étoiles, moins huit degrés \(\frac{1}{3}\); 2° que pendant 5458 mois synodiques, elle faisait 5923 révolutions par rapport à ses nœuds. D'après ce résultat, les mouvemens de la lune dans l'intervalle de 126007ⁱ \(\frac{1}{24}\) sont:

La comparaison de ces mouvemens avec ceux que l'on a déterminés par l'ensemble de toutes les observations modernes, doit rendre très-sensible, leur accélération donnée par la théorie de la pesanteur universelle. Ceux que l'on a ainsi déterminés pour le commencement de ce siècle, donnent en effet, dans le même intervalle de temps, les quantités précédentes augmentées respectivement de +2864",2; +10453",7; +560". L'accélération de ces trois mouvemens depuis Hipparque jusqu'à nous, est évidente : on voit de plus que l'accélération du mouvement de la lune par rapport au soleil, est environ quatre fois moindre que celle de son mouvement par rapport au périgée, tandis qu'elle surpasse considérablement l'accélération du mouvement par rapport au nœud; ce qui est conforme à la théorie de la pesanteur, suivant laquelle ces accélérations sont dans le rapport des nombres 1; 4,00052; 0,264548. Hipparque supposait Babylone plus orientale de 3472" en temps, qu'Alexandrie. Elle était encore suivant les observations de Bauchamp, de 557" plus à l'orient; ce qui a dû un peu augmenter les moyens mouvemens lunaires qu'Hipparque a conclus de la comparaison de ses observations, avec celles des Chaldéens.

Ptolémée ne nous a point transmis les époques des mouvemens lunaires d'Hipparque; mais le peu de changemens qu'il s'est permis de faire à ces mouvemens, et la tendance qu'il montre sans cesse à se rapprocher des résultats de ce grand Astronome, autorisent à penser que les époques d'Hipparque différaient peu de celles des Tables de Ptolémée, qui donnent à l'époque de Nabonassar, c'està-dire, le 26 février de l'année 746 avant notre ère, à midi, temps moyen à Alexandrie,

Si l'on remonte à cette époque, d'après les moyens mouvemens déterminés pour le commencement de ce siècle, par les seules observations modernes; si de plus, on suppose, conformément aux dernières observations, Alexandrie plus orientale que Paris, de 7731",48 en temps; on trouve des distances plus petites que les précédentes, des quantités respectives — 1°,7746; — 7°,2628; - 0°,7617. Ces différences beaucoup trop grandes pour être attribuées aux erreurs des déterminations, soit anciennes, soit modernes, prouvent incontestablement l'accélération des mouvemens lunaires, et la nécessité des équations séculaires. L'équation séculaire de la distance du soleil à la lune, équation qui est la même que celle du moyen mouvement de la lune, puisque celui du soleil est uniforme, devient à l'époque de Nabonassar, 1°,9488. Pour avoir celles des distances de la lune à son périgée et à son nœud ascendant, à la même époque; il faut multiplier la précédente, respectivement par les nombres 4,00052, et 0,264548. On a ainsi les trois équations séculaires, 1°,7963; 7°,1861; 0°,4752. En les ajoutant aux trois différences précédentes, elles les réduisent aux trois suivantes, -217"; +767"; -2865". Ainsi réduites, ces différences peuvent dépendre des erreurs des observations anciennes et modernes; car le moyen mouvement séculaire du nœud, par exemple, ayant été déterminé par les observations de Bradley, comparées aux observations de ces dernières années, c'est-à-dire, par des observations d'un demi-siècle; il peut y avoir sur sa valeur, une incertitude d'ane demi-minute au moins.

NOTE V.

Lies Astronomes d'Almamon trouvèrent par leurs observations, la plus grande équation du centre du soleil, égale à 2°,2037, plus grande que la nôtre, de 655". Albatenius, Ebn-Junis et un grand nombre d'autres Astronomes arabes s'éloignèrent très-peu de ce résultat qui prouve incontestablement, la diminution de l'excentricité de l'orbe terrestre depuis eux jusqu'à nous. Les mêmes Astronomes trouvèrent la longitude de l'apogée du soleil en 830, égale à 91°,8333; ce qui est conforme à peu près à la théorie de la pesanteur, suivant laquelle cette longitude à la même époque devait être de 92°,047. Cette théorie donne 36″,44 pour le mouvement annuel de cet apogée, par rapport aux étoiles; et l'observation précédente donne à deux secondes près, le même mouvement. Enfin, en comparant leurs observations des équinoxes, à celles de Ptolémée; ils trouvèrent pour la durée de l'année tropique, 365i,240706. Vers l'année 803, plus de vingt-cinq ans avant la formation de la Table vérifiée, l'Astronome arabe Alne-Wahendi avait trouvé en comparant ses observations à celles d'Hipparque, une durée de l'année bien plus exacte : il la fixait à 365,242181. Les Astronomes arabes supposèrent presque tous, l'obliquité de l'écliptique, de 26°,2037; mais il paraît que ce résultat est affecté de la fausse parallaxe qu'ils supposaient au soleil; du moins, cela est certain à l'égard des observations d'Ebn-Junis, qui corrigées de cette fausse parallaxe et de la réfraction, donnent 26°,1932 pour cette obliquité vers l'an mil. La théorie donne à cette époque, 26°,2009: la différence — 77" est dans les limites des erreurs des observations arabes. Les époques des Tables astronomiques d'Ebn-Junis, confirment les équations séculaires des mouvemens de la lune : les grandes inégalités de Jupiter et de Saturne sont pareillement confirmées par ces époques et par la conjonction de ces deux

planètes observées au Caire par cet Astronome. Cette observation, l'une des plus importantes de l'Astronomie arabe, se rapporte au 51 octobre 1007 à 0',16 temps moyen à Paris. Ebn-Junis trouva l'excès de la longitude géocentrique de Saturne sur celle de Jupiter, égal à 4444". Les Tables construites par Bouvard d'après ma théorie, et sur l'ensemble des observations de Bradley, Maskeline, et de l'Observatoire impérial, donnent 3856" pour cet excès: la différence 588" est plus petite que l'erreur dont cette observation est susceptible.

NOTE VI.

Les observations des ombres méridiennes du gnomon observées par Cocheou-King, et insérées dans la Connaissance des Tems de l'année 1809, donnent 2°,1759 pour la plus grande équation du centre du soleil en 1280, ce qui surpasse sa valeur actuelle de 377". Elles donnent encore l'obliquité de l'écliptique à la même époque, de 26°,1489; plus grande de 757", que l'obliquité actuelle. Ainsi la diminution de ces deux élémens, est démontrée par ces observations.

L'observation de l'obliquité de l'écliptique par Ulug-Beigh, corrigée de la réfraction, et de la parallaxe, donne cette obliquité en 1437, égale à 26°,1444: elle est plus petite que la précédente, comme cela doit être à cause de l'intervalle de 157 ans, qui sépare les époques correspondantes. Le tableau suivant montre avec évidence, la diminution successive de cet élément, dans un intervalle de 2900 années.

·	Obliquité de l'écliptique.	Excès de cette obliquité, sur le résultat des formules de la Mécanique céleste.
Tcheou-Kong, 1100 ans avant notre ère	26°,5563.	402"
Pythéas, 350 ans avant notre ère	26°,4691.	59 6 ″
Ebn-Junis, an mil	26°,1932.	······ —77°
Cocheou-King, en 1280	26•,1489.	····· —62*
Ulug-Beigh, en 1437	26°,1444.	130*
En 1801	26°,0732	

FIN.

ERRATA.

Page 25, ligne 10, Page 32, ligne 34, du centre de la lune, lisez du centre de la terre. la corde de ce disque, lisez une corde de ce disque.

NOTICE

DES PRINCIPAUX OUVRAGES DE FONDS

ET AUTRES EN GRAND NOMBRE,

COMPOSANT LA LIBRAIRIE DE Mª VE COURCIER, .

Imprimeur-Libraire pour les Mathématiques, la Marine, les Sciences et les Arts;

RUE DU JARDINET, Nº 12, QUARTIER SAINT-ANDRÉ-DES-ARCS.

(CI-DEVANT QUAI DES GRANDS-AUGUSTINS, Nº 57.)

A PARIS.

Mai 1817.

AVIS. Indépendamment des Ouvrages portés sur le present Catalogue, on trouve à ma Librairie un assortiment considérable de Livres anciens et nouveaux sur toutes les parties des Sciences et des Arts en général, mais particulièrement sur les Mathématiques élémentaires et transcendantes, l'Astronomie, la Marine, la Mécanique, l'Optique, l'Horlogerie, l'Architecture civile et hydraulique, l'Art Militaire, la Physique, la Chimie, la Teinture, la Minéralogie, l'Histoire naturelle, les Belles-Lettres, etc., etc.

Ces Ouvrages sont en partie détaillés sur mon Catalogue général, que j'enverrai gratis aux personnes qui m'en feront la demande.

(Les Lettres non affranchies ne me parviennent pas.)

Nota. Tous les prix marqués sur le présent Catalogue sont ceux de Paris et brochés; les personnes qui désireront ne les Livres francs de pont par la poste, ajouteront un tiers en sus. (Les Ouvrages relies et cartonnés ne peuven envoyés par cette voie.)	
ADET. Lecons élémentaires de Chimie, in-8.	6 fr;
ANNALES DE MATHEMATIQUES pures et appliquées, rédigées par M. Gergonne, 6 vol. in-4.	. 71 801
ANNIJAIRE presenté au Roi par le Bureau des Longitudes de France, pour 1817, in-18. (Cet Ouvrage paraît tons les ans.)) ife:
Azemar et Garnier. TRISECTION DE L'ANGLE, suivie de Recherches analytiques sur le même sujet, in-8., 1809. 2 ART DE LA MARINE, faisant partie de l'Encyclopédie méthodique, 3 vol. in-4. et Atlas.	
BAGOT. Tables analytiques des Calculs d'intérêts, etc.	72 fr.
BAILLY. HISTOIRE DE L'ASTRONOMIE ANCIENNE ET MODERNE, dans laquelle on a conservé littéra	lement
le texte, en supprimant seulement les calculs abstraits, les notes hypothétiques, les digressions scientifiques; par le vol. in-8. (Cet Ouvrage se donne très souvent pour prix dans les Lycées.)	
BARRUEL, ex-Professeyr à l'Ecole Polytechnique. TABLEAUX DE PHYSIQUE, on Introduction à cette scie	gír. nce. kr
l'usage des Élèves de l'École Polytechnique; nouvelle édition, entièrement refondue et augmentée, grand in-4., cart.	10 fr.
BERLÍNGHIERI. Examen des opérations et des travaux de César au siège d'Alexia, etc., in-8., 1812. BERNOULLI. (Joannis) Opera, 4 vol. in-4., reliés.	3 fr. 48 fr.
BERNOULLI. (Jacobi) Opera, 2 vol. in-4.	36 fr.
- Ars conjectandi, in-4.	21 fr.
BERTHOUD, Mécanicien de la Marine, Membre de l'Institut de France. Collection de ses différens OUVRAGES L'HORLOGERIE, qui se vendent tous séparément, savoir:	SUR
1º. L'ART DE CONDUIRE ET DE REGLER LES PENDULES ET LES MONTRES, quatrième édition, aug	
d'une planche, et de la manière de tracer la ligne méridienne du tems moyen. Paris, 1811, vol. in-12, avec 5 pl. 2 ? 2°. ESSAI SUR L'HORLOGERIE, dans lequel on traite de cet art relativement à l'usage civil, à l'Astronomie et à l	
gation, avec 38 pl., 2 vol. in-4.	36 fr. >
30. HISTOIRE DE LA MESURE DU TEMS PAR LES HORLOGES. Paris, 1802, 2 vol. in-4., avec 23 pl. gravées.	36 fr.
4°. TRAITÉ DES HORLOGES MARINES, contenant la théorie, la construction, la main-d'œuvre de ces machi la manière de les éprouver, un gros vol. in-4., avec 27 pl.	ines, et 24 fr.
50. ECLAIRCISSEMENS SUR L'INVENTION, la théorie, la construction et les épreuves des nouvelles m	achines
proposées en France pour la détermination des longitudes en mer par la mesure du tems, servant de soite à l'Es.	sai sur ·
THorlogerio, et au Traite des Horloges marines, etc., t v. in-4. 6º. LES LONGITUDES PAR LA MESURE DU TEMS, ou Méthode pour déterminer les longitudes en mei	6 fr.
le secours des horloges marines, 1 v. in-4.	g fr.
7°. DE LA MESURE DU TEMS, ou Supplément au Traité des Horloges marines et à l'Essai sur l'Horlogerie, colles principes de construction, d'exécution et d'épreuves des petites horloges à longitudes, portatives, et l'applicat	
mêmes principes de construction, etc., aux montres de poche, etc., un vol. in-4. avec 11 planch. en taille douce.	18 fr-
8º. TRAITE DES MONTRES A LONGITUDES, contenant la description et tous les détails de main-d'œuvre	de ces
machines, leurs dimensions, la manière de les éprouver, etc. 9°. Suite du TRAITE DES MONTRES A LONGITUDES, contenant la construction des Montres verticale	es noru i
tatives et celle des Horloges horizontales, pour servir dans les plus longues traversées, un vol. in-4. avec deux p	
en taille-donce. — Prix de ces deux derniers volumes réunis en un seul,	24 fr.
800. Supplément au Traité des Montres à Longitudes, suivi de la Notice des recherches de l'Auteur.	g fr.

```
où l'on donne la manière de taire les Caicus des Observations, avec des houveaux vaisseau, etc. Novembre 1814, un Rossel, Membre de l'Institut et du Bureau des Longitudes, ancien Capitaine de Vaisseau, etc. Novembre 1814, un 6 fr.
           ol. in-8., avec 10 planches.
6 fr.
Cette édition du Cours de Mathématiques de Bezout est la plus correcte et la plus complète de toutes celles qui ont paru
 Cette édition du Cours de Mathématiques de Bezout est la plus correcte et la plus complète de toutes celles qui ont paru jusqu'à ce jour.

RICQUILLEY. Du Calcul des Probabilités, in-8.

2 fr. 50 c.

BIOT, Membre de l'Institut, etc. TRAITE ELÉMENTAIRE D'ASTRONOMIE PHYSIQUE, destiné à l'enseignement dans les Lycées, etc., 3 vol. in-8., 1810.

ESSAI DE GEOMÉTRIE ANALYTIQUE appliq. aux Courbes et aux Surfaces du second ordre, in-8. 5 éd. 1813. 5 f. 50 c.

PHYSIQUE MÉCANIQUE de l'ischer, traduite de l'allemand, in-8. 2° édition, 1813.

6 fr.

TABLES BAROMÉTRIQUES portatives, donnant la différence de niveau par une simple soustraction, in-8. 1 fr. 50 c.

Essai sur l'histoire générale des Sciences pendant la révolution, in-8.

1 fr. 50 c.

Traité de Physique, 4 vol. in-8., 1816.

BLAVIER. Nouveau Barrême, ou Comptes faits en livres, sous et francs, snivi d'un Barrême pour les Mesures, in-8. 7 fr.

BOILEAU et AUDIBERT, BARREME GENERAL, ou Comptes faits de tout ce qui concerne les nouveaux poids, mesures et monnaies de la France, etc.; un vol. de 480 pages, in-8., broché, 1803.

6 fr.

BORDA. TABLES TRIGONOMETRIQUES DÉCIMALES, calculées par Ch. Borda, revues, augmentées et publiées par J. B. J. Delambre. Paris, de l'Imprimerie de la République, an IX, in-4.

12 fr.

BOSSUT. Histoire générale des Mathématiques, depuis leur origine jusqu'à l'année 1808, 2 vol. in-8., 1810. 12 fr.

Saggio sulla Storia generale delle Matematiche, prima edizione italiana, con riflessioni ed aggiunte di Gregoria Fontana.

Nilano, 4 vol. in-8., br.

15 fr.

POULCHARLAT. Descence de Mathématiques transcendantes aux Écoles militaires. Docteur ès-Sciences, etc. THÉORIE
   Milano, 4 vol. in-8., br.

BOUCHARLAT, Professeur de Mathématiques transcendantes aux Écoles militaires, Docteur ès-Sciences, etc. THEORIE
DES COURBES ET DES SURFACES DU SECOND ORDRE, précédée des principes fondamentaux de la Géométrie.

5 fr.
 DES COURBES ET DES SURFACES DU SECOND ORDRE, précèdée des principes fondamentaux de la Géométrie analytique, seconde édit., augmentée, in-8.

ELEMENS DE CALCUL DIFFERENTIEL ET DE CALCUL INTÉGRAL, in 8., 1814.

4 fr. 50 c.

ELEMENS DE MÉCANIQUE, in-8., 1815.

6 fr.

BOUCHER. Institution au Droit maritime, etc., Ouvrage utile aux marins, négocians, etc., etc., 1 vol. in-4.

18 fr.

BOUCHESEICHE. Notions élémentaires de Géographie; Ouvrage qui a été jugé propre à l'Instruction publique, quatrième édition, considérablement augmentée, in-12, 1809.

BOULLON-LAGRANGE. Manuel d'un Cours de Chimie, ou Principes théoriques et pratiques de cette science, avec 7 tableaux, 23 planches, et la série des expériences faites à l'Ecole Polytechnique, 3 vol. in-8., 5° édition.

90 fr.

6 fr. 50 c.

BOURDON. THÈSE DE MECANIQUE qui a été soutenue le 9 Mars 1811 devant la Faculté des Sciences de Paris, suivie du Programme de la Thèse d'Astronomie qui a été soutenue le 25 Mars 1811, devant la même Faculté, in-4.

2 fr. 50 c.

BREISLACK. Introduction à la Géologie, traduite de l'italien par Bernard, 1 vol. in-8., 1812.
  BREISLACK. Introduction à la Géologie, traduite de l'italien par Bernard, 1 vol. in-8., 1812.

7 fr.
BRISSON. Pesanteur spécifique des Corps. Ouvrage utile à l'Histoire naturelle, aux Arts et au Commerce, 1 vol. in-4.
         avec planches.

Dictionnaire raisonné de Physique, 6 vol. in-8. et atlas in-4.
                                                                                                                                                                                                                                                                                                                                                          36 fr.
Dictionnaire raisonné de Physique, 6 vol. in-8. et atlas in-4.

BUDAN. Nouvelle Méthode pour la résolution des Equations numériques d'un degré quelconque, d'après laquelle tout le calcul exigé pour cette résolution se réduit à l'emploi des deux premières règles de l'arithmétique, in-4, 1807. 5 fr.

BULLIARD. Histoire des Plantes vénéneuses et suspectes de la France, un vol. in-8., nouvelle édition.

4 fr. 50 c.

BUQUOY. Exposition d'un nouveau principe de Dynamique, in-4, 1815.

2 fr. 50 c.

BURCKHARDT, Membre de l'Institut et du Bureau des Longitudes de France. TABLE DES DIVISEURS POUB TOUS LES NOMBRES DU 1er, 2º et 3º MILLION, avec les Nombres premiers qui s'y trouvent, 1 vol. grand in-4., papier vélin, 1817.
       in-4., papier velin, 1817.

Nora. Chaque million se vend séparément, savoir : le 1° million 15 fr., et les 2° et 3° million, chacun 12 fr.

TABLES DE LA LUNE, Ouvrage faisant partie des Tables astronomiques publiées par le Bureau des Longitudes,

8 fr.
 in-4., 1812.
CAGNOLI. TRAITÉ DE TRIGONOMÉTRIE, trad. de l'italien par M. Chompré, deuxième édition, revue
                                                                                                                                                                                                                                                                                                                                                    et con-
 sidérablement augmentée, in-4., 1808.
CANARD. Traité élémentaire du Calcul des inéquations, in-8., 1808.
CARNOT, Membre de l'Institut et de la Légion-d'Honneur. GEOMETRIE DE POSITION, in-4., papier vélin, 1803.
                                                                                                                                                                                                                                                                                                                                                        18 fr.
                                                                                                                                                                                                                                                                                                                                                            6 fr.
                                                                                                                                                                                                                                                                                                                                                         18fr.
                — Idem, grand papier vélin.

Mémoire sur la relation qui existe entre les distances respectives de cinq points quelconques pris dans l'espace, suivi d'un 5 fr.
       Essai sur la théorie des Transversales, in-4., 1806.

DE LA DEFENSE DES PLACES l'ORTES, Ouvrage composé par ordre du Gouvernement, pour l'instruction des 6 fr.
     Elèves du Corps du Génie, 2º édition, 1811, in-8.

Le même Ouvrage, traisième édition, considérablement augm., un vol. in-4. avec 11 pl. très bien gravées, 1812.

DE LA CORRELATION DES FIGURES DE GEOMÉTRIE. Paris, an 9, in-8., grand papier.

RÉFLEXIONS SUR LA MÉTAPHYSIQUE DU CALCUL INFINITESIMAL, seconde édit., 1813.

11
                                                                                                                                                                                                                                                                                                                                                         24 fr.
3 fr.
                                                                                                                                                                                                                                                                                                                                           3 fr. 50 c.
1 fr. 25 c.
Exposé de sa conduite politique, depuis le 1er juillet 1814, in-8., 1815.

CARTE BOTANIQUE de la Méthode naturelle de Jussieu, in-8., et 4 tableaux, format atlantique.

CHAMBON-DE-MONTAUX. Traité de la Fièrre maligne simple, et des Fièrres compliques de malignité, 4 v. in-12.
                                                                                                                                                                                                                                                                                                                                                          6 fr.
                                                                                                                                                                                                                                                                                                                                                      10 fr.
CHANTREAU. Histoire de France abrégée et chronologique, depuis la première expedition des Gaulois jusqu'en septembre
      1808, etc., 2 val. in-8.
```

```
CHANTREAU. Tablettes chronologiques et documentaires pour sérvir à l'étude de l'Histoire civile et militaire de la France, depuis l'arrivée de Jules-César dans les Gaules jusqu'à nos jours, etc., in-8.

CHLADNI, Correspondant de l'Académie de Saint-Pétersbourg, etc. TRATIÉ D'ACOUSTIQUE, avec 8 planch., in-8.
  CHOMPRÉ. Méthode la plus naturelle et la plus simple d'enseigner à lire, in-8., 1813.

1 fr. 25 c. CHORON, Correspondant de l'Institut. METHODE ELÉMENTAIRE DE COMPOSITION, où les préceptes sont soutenus d'un grand nombre d'exemples très clairs et fort étendus, et à l'aide de laquelle on peut apprendre soi-même à composer toute espèce de Musique; traduite de l'allemand de Albrechtsberger (J. Georg.), Organiste de la Cour de Vienne, etc., et enrichie d'une Introduction et d'un grand nombre de Notes, par A. Choron, 2 vol. in-8., dont un de Musique, 1814. 12 fr. CHRISTIAN. DES IMPOSITIONS et de leur influence sur l'Industrie agricole, manufacturière et commerciale, et sur la proanérité nublique, iu-8., 1814.
    prospérité publique, in-8., 1814.

CLAIRAUT. ELEMENS D'ALGEBRE, sixième édition, avec des Notes et des Additions très étendues, par M. Garnier, précédé d'un Traite d'Arithmétique par Théveneau, et d'une Instruction sur les nouveaux poids et mesures, 2 v. in-8., 1801. 9fr.

THEORIE DE LA FIGURE DE LA TERRE, tirée des principes de l'Hydrostatique, in-8., 2° édition, 1808. 10 fr.
      CONDILLAC. Langue des Calculs, in-8.
                                Le même ouvrage, 2 vol. in-12.
   — Grammaire française, 1 vol. in-12.

— Grammaire française, 1 vol. in-12.

CONDORCET. Essai sur l'application de l'Analyse aux probabilités des décisions rendues à la pluralité des voix, 1 v. in-4. 15 fr.

— Moyen d'apprendre à compter sûrement et avec facilité; Ouvrage posthume, deuxième édition, in-12.

1 fr. 50 c.

CONNAISSANCE DES TEMS à l'usage des Astronomes et des Navigateurs, publice par le Bureau des Longitudes de France, pour l'année 1817, avec Additions, broché.

— Id., pour l'année 1818, avec Additions.

6 fr.

1d., pour l'année 1818, sans Additions.
                          -Id., pour l'année 1818, sans Additions.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            4 fr.
6 fr.
 — Id., pour l'année 1819, avec Additions.

— Id., pour l'année 1819, saus Additions.

— Id., pour l'année 1819, saus Additions.

On peut se procurer la Collection complète ou des années séparées de cet Ouvrage, depuis 1760 jusqu'à ce jour.

CORDIER (Edmond), Instituteur. L'Abeille française, 2 vol. in-8.

— Mémoriat de Théodore, in-8.

— Préparation à l'étude de la Mythologie, in-8., 1810.

COTTE. Mémoire sur la Météorologie, 2 vol. in-4.

— TABLE DU JOURNAL DE PHYSIQUE, un vol. in-4.

COUSIN TRAITE ELEMENTAIRE de l'Analyse mathématique ou d'Algèbre, in-8.

— TRAITE DU CALCUL DIFFERENTIEL et intégral, 2 vol. in-4, 6 pl.

D'ABREU. PRINCIPES MATHÉMATIQUES de feu Joseph-Anastase da Cunha, Professeur à l'Université de Coimbre (comprenant ceux de l'Arithmétique, de la Géométrie, de l'Algèbre, de son application à la Géométrie, et du Calcul différentiel et intégral), traités d'une manière entièrement nouvelle, traduits litteralement du portugais, in-8., 1816. 5 fr.
D'AUBUISSON. De la force militaire considérée dans ses rapports conservateurs, un vol. in-8.

3 fr.
D'AUBUISSON. Mémoire sur les Basaltes de la Saxe, in-8.
                          - Id., pour l'année 1819, avec Additions.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             4 fr.
3 fr.
    D'AUBUISSON. Mémoire sur les Basaltes de la Saxe, in-8.

D'AULNOY. Calcul des Intérêts de toutes les sommes à tous les taux, et pour tous les jours de l'année, etc. 1 fr. 80 c.
DÉFENSE D'ANCONE et des Départemens romains, le Tronto, le Musone et le Metauro, par le genéral Monnier, aux
  années 7 et 8, 2 vol. in-8.

DELAISTRE, ancien Professeur à l'École Militaire de Paris. Encyclopédie de l'Ingénieur, ou Dictionnaire des Ponts et Chaussées, 3 vol. in-8., avec un vol. de pl., in-4., 1812.

DELAMBRE, Secrétaire perpétuel de l'Institut, Membre de la Légion-d'Honneur, Trésorier de l'Université royale de France, etc. TRAITE COMPLET D'ASTRONOMIE THEORIQUE ET PRATIQUE, 3 v. in-4., avec 29 pl., 1814. 60 fr. NOTA. Cet ouvrage est sans contredit le meilleur Traité d'Astronomie et le plus complet qui ait encore paru ; il remplant calvi de Lalande qui est épaine.
France, etc. TRAITÉ COMPLET D'ASTRONOMIE THEORIQUE ET PRATIQUE, 3v. in-4., avec 29 pl., 1814. 60 fr. Nota. Cet ouvrage est sans contredit le meilleur Traité d'Astronomie et le plus complet qui ait encore paru ; il remplace celui de Lalande qui est épuisé.

— Abrégé du même Ouvrage, on LEÇONS ÉLÉMENTAIRES D'ASTRONOMIE THÉORIQUE ET PRATIQUE donnérs su Collége de France, un vol. in-8., avec 14 planch., 1813.

— METHODES ANALYTIQUES pour la détermination d'un arc du Méridien. Paris, an 7, in-4.

— TABLES ASTRONOMIQUES publicés par le Bureau des Longitudes de France. Première partie. Tables du Soleil par M. Delambre; Tables de la Lune par M. Bürg, in-4., 1806.

— TABLES ASTRONOMIQUES publicés par le Bureau des Longitudes de France; nouvelles Tables de Jupiter et de Saturne calculées d'après la théorie de M. Laplace, et suivant la division décimale de l'angle droit, par M. Bouvard, in-4. 9 fr.

— TABLES ASTRONOMIQUES du Bureau des Longitudes; Tables écliptiques des Satellites de Jupiter, d'après la théorie de M. Laplace et la toralité des observations faites depuis 1662 jusqu'à l'an 1802, par M. Delambre, in-4., 1817. 9 fr.

— TABLES DE LA LUNE (voyez BURCKHARDT.)

— Bases du Système métrique, 3 vol. in-4. (Voyez BORDA.)

DELAMÉTHERIE, Professeur au Collége de France, Rédacteur du Journal de Physique, etc. CONSIDÉRATIONS SUR LES ETRES ORGANISÉS, 2 vol. in-8.

— DE LA PERFECTIBILITÉ et de la dégénérescence des Étres organisés, formant le tome 3° des Considérations sur les Êtres organisés, 1 vol. in-8.

— DE LA NATURE DES ÉTRES EXISTANS, 1 vol. in-8.

— LECONS DE GÉOLOGIE données au Collége de France, 3 vol. in-8., 1812.

— LECONS DE MINERALOGIE données au Collége de France, 3 vol. in-8., 1616.

— BLAU. DÉCOUVERTE DE L'UNITE et généralité de principe, d'idée et d'exposition de la Science des Nombres, son application positive et régulière à l'Algèbre, à la Géométrie, etc., in-8.

5 fr. DELAU. DÉCOUVERTE DE L'UNITE et généralité de principe, d'idée et d'exposition de la Science des Nombres, son application positive et ré
   Chaque volume se vend séparément, savoir :

— IDEOLOGIE proprement dite, in-8., 2° édition.

— GRAMMAIRE, in-8.

— LOGIQUE, in-8.

— TRAITE DE LA VOLONTÉ ET DE SES EFFETS, 4° et 5° Parties, in-8., 1815.

— PRINCIPES LOGIQUES, ou Recueil de faits relatifs à l'intelligence humaine, in-8., 1817.

DEVELEY, ÉLÉMENS DE GÉOMÉTRIE, avec figures, seconde édition, in-8., 1816.

— APPLICATION DE L'ALGÈBRE A LA GÉOMÉTRIE, in-4., 1816.

— Physique d'Emile, in-8. (Et autres ouvruges du même Auteur.)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        5 fr.
5 fr.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        6 fr,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          6 fr.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           g fr.
```

```
DICTIONNAIRE DE L'ACADÉMIE FRANÇAISE, 2 vol. in-4, dernière édition.

DIEUDONNÉ-THIÉBAULT, Proviseur du Lycée de Versailles. GRAMMAIRE PHILOSOPHIQUE, ou la Métaphysique, la Logique en un seul corps de doctrine, 2 vol. in-8.

Traité du Style, 2 vol. in-8.

DIONIS - DU-SEJOUR. TRAITÉ DES MOUVEMENS APPARENS DES CORPS CÉLESTES, 2 vol. in-4. 48 fr. DRUET. Mémoire sur différentes questions relatives à la Physique générale, in-8., 1811.

If r. 25 c.

DUBOURGUET, Professeur de Mathém au Collège Louis-le-Grand, ancien Off. de Marine, etc. TRAITÉ DE NAVIGATION, Ouvrage approuvé par l'Institut de France, et mis à la portée de tous les Navigat., 1808, 10-4., ayec fig. et tableaux. 20 fr.

TRAITES ELÉMENTAIRES DE CALCUL DIFFERENTIELET DE CALCUL INTEGRAL, indépendans de cuantités infinitésimales et de limites: Ouvrage mis à la portée des Commencans. et où se trouvent
               toutes notions de quantités infinitésimales et de limites; Ouvrage mis à la portée des Commençans, et où se trouvent
plusieurs nouvelles théories et méthodes fort simplifiées d'intégrations, avec des applications utiles aux progrès des Sciences
   plaseurs nouvelles théories et méthodes fort simplifiees d'intégrations, avec des applications utiles aux progrès des Sciences exactes, 2 vol. in-8.

DUCHATELET. Principes mathématiques de la Philosophie naturelle, 2 vol. in-4.

24 fr.

DUCREST. Vues nouvelles sur les Courans d'eau, la Navigation intérieure et la Marine, in-8., 1803.

4 fr.

DUFRESNE. Barréme, ou Comptes faits, pour les achats et ventes d'eau-de-vie, in-8.

2 fr. 50 c.

DUPIN, Capitaine du Génie maritime, etc. DEVELOPPEMENS DE GEOMÉTRIE, avec des applications à la stabilité des vaisseaux, aux déblais et remblais, au défilement, à l'optique, etc., pour faire suite à LA GEOMÉTRIE

DESCRIPTIVE et à la Géométrie analytique de M. MONGE, in-4, avec planch., 1813.

15 fr.

ESSAIS SUR DÉMOSTHENES et sur son éloquence, contenant une traduction des Harangues pour Olynthe, avec le texte en regard; des considérations sur les beautés des pensées et du style de l'Orateur athénien, in-8., 1814.

4 fr.

Du rétablissement de l'Accènitecture navale militaire, analyse, etc., in-4., 1815.

15 fr. 50 c.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 4 fr.
1 fr. 50 c.
1 fr. 50 c.
    — Tableau de l'Academie de l'Academie de l'Arché. 115. 50 c.

— Tableau de l'Archétecture navale militaire, analyse, etc., in-4., 1815. 1 fr. 50 c.

DUPUIS. MEMOIRE EXPLICATIF DU ZODIAQUE chronologique et mythologique, Ouvrage contenant le tableau comparatif des maisons de la Lune chez les différens peuples de l'Orient, in-4., 1806. 6 fr.

DUPUIS. ANALYSE RAISONNEE DE L'ORIGINE DE TOUS LES CULTES, ou Religion universelle; sur l'ou-
     vrage publié en l'an III, vol. in-8.

3 fr.

DURAND. Statique élémentaire, ou Essai sur l'état géographique, physique et politique de la Suisse; Ouvrage consacré
    à l'instruction de la jeunesse, 4 vol. in-8.

DUTENS. Analyse raisonnée des principes fondamentanx de l'Economie politique, in-8.

DUVAL-LEROY. Élémens de Navigation, in-8.

DUVILLARD. RECHERCHES SUR LES RENTES, les Emprunts, etc., in-4.

ANALYSE ET TABLEAU de l'influence de la petite vérole sur la mortalité à chaque age, et de celle qu'un priser.
O ANALYSE ET TABLEAU de l'influence de la petite vérole sur la mortalité à chaque âge, et de celle qu'un préservatif tel que la vaccine peut avoir sur la population et la longévité, 1806, in-4.

In fr. 50 c.

Eloge de Voltaire, par Laharpe, in-8.

EULER. ELEMENS D'ALGEBRE, nouv. édit., 1807, 2 vol. in-8.

Cette édit. est la meilleure et la plus complète qui ait encore paru. La première partie contient l'Analyse déterminée, revue et augmentée de Notes par M. Garnier. La deuxième partie contient l'Analyse indéterminée, revue et augmentée de Notes par M. Lagrange, Schateur, Membre de l'Institut, cte.

LETTRES A UNE PRINCESSE D'ALLEMAGNE, sur divers sujets de Physique et de Philosophie, nouv. édit., conforme à l'édition originale de Saint-Pétersbourg, revue et augmentée de l'Eloge d'Euler par Condorcet, et de diverses Notes par M. Labey, ex-Instituteur à l'Ecole Polytechnique, etc., 2 forts vol. in-8. de 1180 pag., imprimés en caractère neuf dit Cicèro gros-œil, et sur pap. carré fin, avec le portrait de l'Auteur, 1812, belle edition.

Et papier vélin, dont on a tiré quelques exemplaires.

Introductio in Analysiu infinitorum, 2 vol. in-4.

Et tous les autres Ouvrages de cet Auteur.

FISCHER. PHYSIQUE MÉCANIQUE, traduite de l'allemand, avec des Notes de M. Biot, in 8., seconde édit., 1813. 6 fr. FLEURIEU, Membre de l'Institut national des Sciences et des Arts, et du Bureau des Longitudes, etc. VOYAGE AUTOUR D'U MONDE, pendant les années 1790, 1791 et 1792, par E'I IENNE MARCHAND, précédé d'une Introduction historique; auquel on a joint des Recherches sur les Terres australes de Brake, et un Examen critique du Voyage de Roggeween, avec Cartes et Figures; par P. C. Claret Fleurairu, Membre de l'Institut national des Sciences et des Arts, et du Bureau des Longitudes, etc., 4 vol. in-4, 1899.

Le même Ouvrage. 5 vol in-8, avec Adas in-6.
Roggeween, avec Cartes et Figures; par F. C. CLARET FLEURIZO, Manufactus de l'austrate manufactus des Cartes et du Bureau des Longitudes, etc., 4 vol. in-4., 1809.

Le même Ouvrage, 5 vol. in-8., avec Atlas in-4.

Application du Système métrique et décimal à l'Hydrographie et aux Calculs de Navigation, in-4.

5 fr.

FLORE NATURELLE ET ECONOMIQUE DES PLANTES QUI CROISSENT AUX ENVIRONS DE PARIS, au nombre de plus de 400 genres et de 1400 espèces, contenant l'enumération de ces Plantes, rangées suivant le système des Jussieu, et par ordre alphabétique, leurs noms triviaux, leurs synonymies françaises, leurs descriptions, les endroits où se trouvent les plus rares: 2º édit., augmentée de la Flore naturelle et de 24 planches soignensement gravées; par une Société de Naturalistes. 2 vol. in-8.
 de Naturalistes, 2 vol. in-8.
FOURCROY. TABLEAUX SYNOPTIQUES DE CHIMIE, in-fol., cart.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  9 tr.
5 fr.
                       Analyse chimique de l'Eau sulfureuse d'Enghien, pour servir à l'histoire des eaux sulfureuses en général, in-8.
  FRANÇAIS, Professeur à Metz. Mémoire sur le mouvement de rotation d'un corps solide autour de son centre de masse,
 in-4., 1813.

2 fr 50 c.

FRANCHINI. Mémoires sur l'intégration des Equations différentielles, in-4.

FRANCEUR, Professeur de la Faculté des Sciences de Paris, Examinateur des Candidats de l'Ecole Polytechnique, etc.

10 COURS COMPLET DE MATHEMATIQUES PURES, dédié à S. M. Alexandre Ier, Empereur de toutes les
Russies; Ouvrage destiné aux Elèves des Ecoles Normale et Polytechnique, et aux Candidats qui se préparent à y être admis, 2 vol. in-8, avec planches.

2°. TRAITE ÉLÉMENTAIRE DE MÉCANIQUE, à l'asage des Lycées, etc., 4° édit., iu-8.

3°. ÉLÉMENS DE STATIQUE, in-8,

4°. URANOGRAPHIE, ou TRAITÉ ÉLÉMENTAIRE D'ASTRONOMIE, à l'usage des personnes peu versées dans les Mathématiques, accompagné de Planisphères, 1 vol. in-8.

7 fr.

7 fr.

7 fr.
  FULTON. (Robert) Recherches sur les moyens de perfectionner les Canaux de navigation, et sur les nombreux avan-
tages des petits Ganaux, etc., avec le Supplement.

7 fr. 50 c.

FURGENSEN. (Urbain) Horloger. Principes généraux de l'exacte mesure du temps par les Horloges, etc. Copenhague, 1805, 1 vol. in-4., avec atlas de 19 planches.

GARNIER, ex-Professeur à l'Ecole Polytechnique, Docteur de la Faculté des Sciences de l'Université, Professeur de Mathématiques à l'Ecole royale militaire. COURS COMPLET DE MATHÉMATIQUES, comprenant les Ouvrages
suivans, qui se vendent chacun séparément, savoir :

1º. TRAITE D'ARITHMETIQUE à l'usage des Élèves de tout see, deuxième édition, in-8., 1808.

2º. ELÉMENS D'ALGEBRE à l'usage des Aspirans à l'Écols Polytechnique, troisième édition, 1811, in-8., revue,
5 fr.
          corrigée et augmentée.
```

```
GARNIER. 3º. Spite de ces Élémens, xº partie. ANALYSE ALGÉBRIQUE, nouv. édition, considérablement augm.,
  in-8,, 1814: 6 fr. 4º. GEOMETRIE ANALYTIQUE, ou Application de l'Algèbre à la Géométrie, seconde édition, revue et angmenter,
 un vol. in-5. avec 14 pl., 1813.

5 fr. 50 c.

5. LES RECIPROQUES DE LA GEOMETRIE, suivis d'un Recueil de Problèmes et de Théorèmes, et de la construe-
5. LES RECIPROQUES DE LA GEOMETRIE, suivis d'un Recueil de Problèmes et de Théorèmes, et de la construction des Tables trigonométriques, in-8., 2° édition, considérablement augmentée, 1810.

5. fr. 6°. ÉLÉMENS DE GEOMETRIE, contenant les deux Trigonométries, les Élémens de la Polygonométrie et du levé des Plans, et l'Introduction à la Géométrie descriptive, un vol. in-8., avec pl., 1812.

5. fr. 7°. LECONS DE STATIQUE à l'upage des Aspirans à l'École Polytechnique, un vol. in-8., avec 12 pl., 1811.

5. fr. 7 fr. 8°. LECONS DE CALCUL DIFFERENTIEL, 3° édition, un vol. in-8., avec 4 pl., 1811.

7. fr. 10°. Discussion des Racines des Equations déterminées du premier degré à plusieurs inconnuea, et élimination entre deux équations de degrés quelconques à deux inconnues, deuxième édition.

1. fr. 8° c. GAUSS. RECHERCHES ARITHMETIQUES, traduites par M. Poulet-Delisle, Elève de l'Ecole Polytechnique, et Professeur de Mathématiques à Orléans. 1 vol. in-4., 1807.
GAUSS. RECHERCHES ARITHMETIQUES, traduites par M. Poulet-Densie, eleve de l'Ecole Polytechnique, et Professeur de Mathématiques à Orléans, 1 vol. in-4., 1807.

GRARD, Ingénieur, en chef des Ponts et Chaussees, Directeur du Canal de l'Oureq et des Eaux de Paris. RE-CHERCHES EXPÉRIMENTALES SUR L'EAU ET LE VENT. considérés comme forces motrices, applicables aux moulins et autret machines à mouvement circulaire, traduit de l'anglais de Smeaton, in-4., avec planches, 1810.

GIRAUDEAU. La Banque rendue facile aux principales nations de l'Europe, suivie d'un nouveau Traité de l'achat et de la vente des matières d'or et d'argent, avec l'Art de tenir les Livres en parties doubles, 1793, in-4.

Le Flambeau des Comptoirs, contenant toutes les écritures et opérations de Commerce de terre, de mer et de Banque, nouvealle édition, corrigée et augm., 1707. in-4.
nouvelle édition, corrigée et augm., 1797, in-1.

6 fr.

GIROD-CHANTRANS. ESSAI SUR LA GEOGRAPHIE PHYSIQUE, le climat et l'histoire naturelle du département
GIROD-CHANTRANS. ESSAI SUR LA GEOGRAPHIE PHYSIQUE, le climat et l'histoire naturelle du département du Doubs, 2 vol. in-8.

GOUDIN (Œuvres de M. B.), contenant un Traité sur les propriétés communes à toutes les Courbes, un Mémoire sur les éclipses de Soleil, nouvelle édition, in-4.

GRASSET-SAINT-SAUVEUR. L'ANTIQUE ROME, on Description historique et pittoresque de tout ce qui concerne le peuple romain, dans ses costumes civils, militaires et religieux, dans ses mœurs publiques et privées, depuis Romulus jusqu'à Auguste; Ouvrage orné de 50 portraits, 1 vol. in-4.

—MUSEUM DE LA JEUNESSE, ou Tableau historique des Sciences et desArts; Ouvrage orné de gravures coloriées, représentant ce qu'il y a de plus intéressant sur l'Astronomie, la Géologie, la Météorologie, la Geographie, les trois règnes de la Nature, les Mathématiques, la Mécanique, la Physique, etc., un gros vol. in-4., renfermant 2 i livraisons, 1812.

80 fg.

GUYOT. Récréations de Mathématiques, nouvelle édition, 3 vol. in-8., avec 100 figures.

HACHETTE, ex-Professeur à l'École Polytechnique. PROGRAMME D'UN COURS DE PHYSIQUE, ou Précis des Lecons sur les principaux phénomènes de la nature, et sur quelques applications des Mathématiques à la Physique, in-8., 1809. 5 fr. 50 c.
         sur les principanz phénomènes de la nature, et sur quelques applications des Mathématiques à la Physique, in-8., 1809. 5 fr. 50 c.

— Traité des Surfaces du second degré, in-8., 1813.

— Traité élémentaire des Machines, 1 vol. in-4., avec 28 pl., 1811.

— Correspondance sur l'Ecole Polytechnique, premier volume, contenant 10 Numéros, in-8.

— Idom, tome II, comprenant toing Numéros, avec pl.

— Idom, tome III comprenant toing Numéros, avec pl.
— Idem, tome III, comprenant cinq Numeros, avec pl.

— Idem, tome III, comprenant trois Numeros, avec pl. (On vend séparément chaque Numero et chaque Volume.) 12 fr.

HASSENFRATZ. Cours de Physique céleste, seconde édition, avec 20 planch., 1 vol. in-8. 7 fr. 50 g.

HATCHETT, Membre de la Societé royale de Londres. EXPÉRIENCES NOUVELLES ET OBSERVATIONS SUR

LES DIFFERENS ALLIAGES DE L'OR, leur pesanteur spécifique, etc., traduites de l'anglais par Lerat, Contrôleur
du monnoyage à Paris, avec des Notes par Guyton-Morveau, etc., in-4.

HAUY, Membre de l'Institut et de la Légion-d'Honneur. Traité élémentaire de Physique, 2 vol. in-8., pap. vélin (le
          papier ordinaire est épuisé).

33.fr.

TABLEAU COMPARATIF DES RÉSULTATS DE LA CRISTALLOGRAPHIE et de l'Analyse chimique, re-
lativement à la classification des Minéraux, vol. in-8.

5 fr. 50 c.
 — Traité de Minéralogie, 4 vol. in-4. et atlas.

Essai d'une théorie sur la structure des Cristaux, in-8.

HERBIN-DE-HALLE. DES BOIS PROPRES AU SERVICE DES ARSENAUX DE LA MARINE ET DE LA
HERBIN-DE-HALLE. DES BOIS PROPRES AU SERVICE DES ARSENAUX DE LA MARINE ET DE LA GUERRE, etc., in 8.

— TRAITE DU CUBAGE DES BOIS, etc., un vol. in-12

— TRAITE DU CUBAGE DES BOIS, etc., un vol. in-12

— TRAITE DU CUBAGE DES BOIS, etc., un vol. in-12

— TRAITE DU CUBAGE DES BOIS, etc., un vol. in-12

— Service de la méthode de détruire les nuisibles et de multiplier les utiles, cinquième édit., 2 vol. in-12.

4 fr.

HISTOIRE DES PRISONS DE PARIS et des Départemens, contenant des Mémoires rares et précieux; le tout pour servir à l'Histoire de la Revolution française, 4 vol. in-12 ornés de 8 figures, 1797.

HOMASSEL, Elève gagnant maîtrise, et ex-Chef des Teintures de la Manufacture royale des Gobelins. COURS THEO-RIQUE ET PRATIQUE SUR L'ART DE LA TEINTURE EN LAINE, soie, fil, coton, fabrique d'indienne en graud et petit teint, soivi de l'Art du Teinturier-Dégraisseur et du Blanchisseur, avec les expériences faites sur les végétaux colorans, revu et augmenté par Bouillou-Lagrange, Professeur et auteur d'un Cours de Chimie, 1 vol. in-8., nouv. édit. 5 fr.

(Cet Ouvrage est le plus pratique et le meilleur qui ait encore paru sur la Teinture.)
  (Cet Ouvrage est le plus pratique et le meilleur qui ait encore paru sur la Teinture.)

JANTET. Traité élémentaire de Mécanique, in-8.

JANVIER. (Antide) Manuel Chronométrique, ou précis de ce qui concerne le Tems, ses divisions, ses mesures,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                leurs
JANVIER. (Antide) Manuel Chronométrique, ou précis de ce qui concerne le Tems, ses divisions, ses mesures, leurs usages, in-18., fig., 1815.

— Essai sur les Horloges publiques, etc., in-8.

JOURNAL DE L'ECOLE POLYTECHNIQUE, par MM. Lagrange, Laplace, Monge, Prony, Fourcroy, Berthollet, Vauquelin, Lacroix, Hachette, Poisson, Sganzin, Guyton-Morveau, Barruel, Legendre, Haüy, Malus.

— La Collection jusqu'à la fin de 1816 contient seize Cahiers in-4 renfermés en quinze, avec des planches; elle comprend les 1e<sup>7</sup>, 2e, 3e, 4e, 5e, 6e, 7e, 8e, 10e, 11e, 12e, 13e, 14e, 15e, 16e et 17e Cahiers.

— Chaque Cahier séparé se vend,

— Excepté les 14e et 17e Cahiers, qu'on vend,

— Et le 16e.
Et le 16°,

Nota. Il n'existe pas de 9° Cahier; on prend la Théorie des Fonctions analytiques de Lagrange pour former ce 9° Cahier.

JOURNAL DE PHYSIQUE, DE CHIMIE, D'HISTOIRE NATURELLE et des Arts, 83 vol. in-4., avec pl., etc.

(Voy. à la fin du Catalogue.)

KRAMP, Professeur de Mathématiques. Elémens d'Arithmétique universelle, in-8., 1808.

7 fr.
          AANT, Professeur de Manual des des Marties des Candidats pour l'École Polytechnique; Ouvrage adopté M. LABEY, Professeur de Mathématiques, et ex-Examinateur des Candidats pour l'École Polytechnique; Ouvrage adopté
  LACAILLE.
          par l'Université pour l'enseignement dans les Lycees, etc., in-8., fig., 1811.
                                                                                                                                                                                                                                                                                                                                                                                                                                             6 fr. 50 c.
```

```
LACAILLE. Leçons d'Optique, augmentées d'un Traité de Perspective, in-8., seconde édit., 1801.

6 fr. LACOUDRAYE. Théorie ides Vents et des Ondes, in-8.

LACROIX, Membre de l'Institut et de la Légion-d'Honneur, Professeur au Collége royal de France,, etc. COURS COM-
PLET DE MATHEMATIQUES à l'usage de l'Ecole centrale des Quatie-Natious; Ouvrage adopté par le Gouvernement
pour les Lycées, Ecoles secondaires, Colléges, etc., 9 vol. in-8.

Chaque volume se vend séparément, savoir:

TRAITE ELÉMENTAIRE D'ARITHMETIQUE, 13° édit., 1813.

2 fr.

ELÉMENS D'ALGÈBRE, 11° édition, 1815.

4 fr.

TRAITE ELÉMENTAIRE DE TRIGONOMÉTRIE RECTILIGNE ET SPHÉRIQUE, et d'Application d'Al-
gèbre à la Géométrie, 6° édit., 1813.
          TRAITE ELEMENTAIRE DE TRIGONOMETRIE RECTILIGNE ET SPHERIQUE, et d'Application d'Algèbre à la Géométrie, 6° édit., 1813.

COMPLÉMENT DES ÉLÉMENS D'ALGÈBRE, 3° édition.

COMPLÉMENT DES ÉLÉMENS DE GÉOMÉTRIE, Élémens de Géométrie descriptive, 4° édit., 1812. 3 fr.

TRAITE ELEMENTAIRE DE CALCUL DIFFERENTIEL et de Calcul intégral, 2° édit., 1806. 7 fr. 50 c.

ESSAIS SUR L'ENSEIGNEMENT en genéral, et sur celui des Mathématiques en particulier, ou Manière d'étuder et d'enseirger les Mathématiques, 1 vol. in-8., 2° édit., 1816.

TRAITE ÉLÉMENTAIRE DU CALCUL DES PROBABILITÉS, in-8., 1816.

(Ce Cours de Mathématiques, le plus complet qui existe, est genéralement adopté dans l'instruction publique.)

TRAITE COMPLET DU CALCUL DIFFÉRENTIEL ET INTEGRAL, 2° édition, revue et cousidérablement angmentée, toure I et II. in-6.
            augmentee, tome I et II, in-4.
                                                                                                                                                                                                                                                                                                                                                                                                                                            40 fr.
   augmentee, tome I et II, 10-4.

Le tome II, qui vient de paraître, se vend séparément,
Nota. Il reste encore des exemplaires du troisième volume de la première édition de cet Ouvrage, contenant un Tsaité
des Différences et des Séries, et qui peut compléter ledit Ouvrage, en attendant que la seconde édition de ce troisième
volume soit imprimée; il se vend séparément,
LAGRANGE, Membre de l'Institut et du Bureau des Longitudes de France, etc. MÉCANIQUE ANALYTIQUE, nouv-
volume soit imprimée; il se vend séparèment,

LAGRANGE, Membre de l'Institut et du Burean des Longitudes de France, etc. MÉCANIQUE ANALYTIQUE, nouv. ddit., revne et considérablement augmentée par l'Auteur, 2 vol. in-4., 1811 et 1815.

THEORIE DES FONCTIONS ANALYTIQUES, contenant les principes du Calcul différentiel, dégagés de toute considération d'infiniment petits, d'évanouissans, de limites et de fluxions, et réduite à l'Analyse algebriques des quantités finies, nouv. édit., revue et augmentée par l'Anteur, in-4., 1813.

LEÇONS SUR LE CALCUL DES FONCTIONS, nouv. édit., revue, corrigée et augmentée, in-8., 1806. 6 fr. 50 c.

DE LA RESOLUTION DES EQUATIONS NUMERIQUES de tous les dégrés, avec des Notes sur plusieurs points de la théorie des Equations algébriques, in-4., 1808. nouvelle édition, revue, corrigée et considérablement augmentée; Onvrage adopté par l'Université pour l'enseignement dans les Lycées.

LAGRIVE. MANUEL DE TRIGONOMETRIE PRATIQUE, revu par les Professeurs du Cadastre, MM. Reynaud, Haros, Plausol et Bozon, et augmenté des Tables des Logarithmes à l'usage des Ingénieurs du Cadastre, 1 v. in-8. 7 fr. LA HARPE. Mélanie, ou la Religieuse, in-18.

LALANDE. TABLES DES LOGARITHMES pour les nombres et les sinus, etc., revues par M. REYNAUD, Examinateur des Candidats de l'École Polytechnique, precédées de la Trigonométrie analytique, par le même, 1 vol. in-18. 2 fr. 50 c.

— Abregé de Navigation historique, théorique et pratique, avec des Tables horaires pour connaître le temps vrai par la hauteur du soleil et des étoiles dans tous les temps de l'année, etc., in-4.

— HISTOIRE CELESTE FRANÇAISE, in-4.

— BIBLIOGRAPHIE ASTRONOMIQUE, in-4.

LAPLACE, Pair de France, Grand-Officier de la Légion-d'Honneur, Membre de l'Institut et du Burean des Longitudes de France, etc. TRAITE DE MÉCANIQUE CELESTE, 4 vol. in-4., avec 12 planch., 1808.

LAPLACE, Pair de France, Grand-Officier de la Légion-d'Honneur, Membre de l'Institut et un Supplément faisant suite au dixième livre de la Mécanique céleste, se vend séparém
                  -Chaque Supplément séparément.

3 fr. 50 c.
-EXPOSITION DU SYSTEME DU MONDE, 4º édit., revue et augm., in-4., 1813, avec le portrait de l'Auteur. 15 fr.
                   Le même Ouvrage, 2 vol. in-8., saus portrait.

12 fr.
THEORIE ANALYTIQUE DES PROBABILITÉS, in-4., seconde édition, 1814, avec un Supplément imprimé
           en 1816.
  ESSAI PHILOSOPHIQUE SUR LES PROBABILITÉS, troisième édit., in-8., 1816.

ESSAI PHILOSOPHIQUE SUR LES PROBABILITÉS, troisième édit., in-8., 1816.

AROCHEFOUCAULT-LIANCOURT. Voyage dans les Etats-Unis d'Amérique, faits en 1795, 96, 97, 8 vol. in-8.

3 fr.

LASSALE. HYDROGRAPHIE DEMONTRÉE et appliquée à toutes les parties du pilotage, à l'usage des Élèves on
 Aspirus de la Marine militaire ou marchande, in-8.

Aspirus de la Marine militaire ou marchande, in-8.

6 fr.

LASUITE. Etémens d'Arithmétique, in-8.

2 fr. 50 c.

LAVIROTTE. Decouvertes philosophiques de Newton, in-4.

12 fr.

LEFEVRE, Ingénieur-Géomètre en chef du département d'Ille-ct-Villaine. NOUVEAU TRAITÉ GÉOMÉTRIQUE
 DE L'ARPENTAGE, à l'usage des personnes qui se destinent à la mesure des terrains et au levé des plans et nivellement, troisième édit, revue et augmentée, 2 vol. in-8., 1811, avec 25 planches.

C'est sans contredit le meilleur Traité d'Arpentage et le plus complet qui ait encore paru.

LEFRANÇOIS. ESSAIS DE GEOMÉTRIE ANALYTIQUE, seconde édit, revue et augmentée, 1 vol. in-8. 2 fr. 50 c.

LEGENDRE, Memure de l'Institut et de la Légion-d'Honneur. ESSAI SUR LA THEORIE DES NOMBRES, deuxième
           edit., revue et considérablement augmentée, 1 vol. in-4., avec le Supplément imprimé en 1816.
                - Le Supplément se vend séparement.
        Nouvelle methode pour la détermination des Orbites des Comètes, avec un Supplément contenant divers perfectionnemens de ces méthodes, et leur application aux deux Comètes de 1805, 1806, in 4. 66 fr.

Exercices de Calcul intégral sur divers ordres de Transcendantes, avec quatre Supplémens, in 4. 46 ir.
                                                                                                                                                                                                                                                                                                                                                                                                                                      6 fr.
46 fr.
26 fr.
                   Les quatre Supplémens, imprimes en 1815 et 1816, se vendent separement,
— Elémens de Géométrie, in-8. 6 fr.
LEGENDRE (Arithméticien). L'Arithmétique en sa perfection, mise en pratique selon l'usage des Financiers, Ban-
        quiers, etc., 1 vol. in-12, 1806.
Nora. Cet Ouvrage n'est pas du même auteur que les précédens.
                                                                                                                                                                                                                                                                                                                                                                                                                                          3 fr.
LEIBNITZ, Opera, 6 vol. in-4.

LEONARD DE VINCI. Essai sur ses Ouvrages Physico-Mathématiques, avec des fragmens tirés de ses manuscrits apportés d'Italic, par J.B. Venturi, Professeur de Physique à Modène, in 4.

LEPAUTE, Horloger du Roi. TRAITÉ D'HORLOGERIE, contenant tout ce qui est nécessaire pour bien connaître et
       pour regler les Pendules et les Montres, la description des pièces d'Horlogerie les plus utiles, etc., volume in-4., avec 17 planches, 1767.
```



```
LEPILEUR-D'APLIGNY. E'Art de la Teinture des fils et étoffes de côton, in-12.

1 fr. 80 c. LIBES, Professeur de Physique au Lycée Charlemagne, à Paris, etc. HISTOIRE PHILOSOPHIQUE DES PROGRÈS
   LIBES, Professeur de Physique au Lycée Charlemagne, à Paris, etc. HISTOIRE PHILOSOPHIQUE DES PROGRES DE LA PHYSIQUE, 4 vol. in-8., 1811 et 1814.

— Le quatrième volume, qui vient de paraître, se vend séparément.

— TRAITE COMPLET ET ELEMENTAIRE DE PHYSIQUE, seconde édition, revue, corrigée et considérablement augmentée, 3 vol. in-8. avec fig., 1813.

NOTA. Tous les Journaux et les Savans en général ont fait le plus grand éloge de ces deux Ouvrages.

LIDONNE. Tables de tous les Diviseurs des nombres calculés depuis un jusqu'à cent deux mille, in-8., 1808. 6 fr. MAINE-BIRAN. INFLUENCE DE L'HABITUDE sur la faculté de peuser; ouvrage qui a remporté le pfix sur cette question proposée par la Classe des Sciences morales et politiques de l'Institut national: Déterminer quelle est l'influence de l'habitude sur la faculté de penser; ou, en d'autres termes, faire voir l'effet que produit, sur chacune de nos facultés intellectuelles, la fréquente répétition des mêmes opérations, 1 vol. in-8.

MAIRAN. TRAITE DE L'AURORE BOREALE, in-4.

MAIRAN. TRAITE DE L'AURORE BOREALE, in-4.

MANILIUS. Astronomicon, libri quinque, édit. Pingré, 2 vol. in-8.

MARCHAND. Voyage, etc. (Voyez FLEURIEU).

MARECHAL (le) de poche, qui apprend comment il faut traiter un Cheval en voyage, et quels sont les accidens ordinaires qui peuvent lui arriver en route, etc., in-18, avec figures.
   maires qui peuvent lui arriver en route, etc., in-18, avec figures.

2 fr. 50 c.

MASCHERONI. Géométrie du Compas, in-8.

7 fr.

—PROBLEMES DE GEOMÉTRIE résolus de différentes manières, traduit de l'italien, vol. in-8.

3 fr.

MAUDRU. ÉLÉMENS RAISONNES DE LA LANGUE RUSSE, ou principes généraux de la Grammaire appliqués
             à la Langue russe, 2 vol. in-8.
                                                                                                                                                                                                                                                                                                                                                                                                                                         12 fr.
                    Nouveau Système de Lecture, 2 vol. in-8. et atlas.
Elémens raisonnés de Lecture, à l'usage des Écoles primaires, in-8., figures.
                                                                                                                                                                                                                                                                                                                                                                                                                                            9 fr.
50 c.
                                                                                                                                                                                                                                                                                                                                                                                                                        T fr.
    MAUDUIT. Introduction aux Sections coniques, pour servir de suite aux Élémens de Géométrie de M. Rivard, in 8. 3 fr.
               (Et autres Ouvrages du même Auteur.)
   MEMOIRE sur la Trigonométrie sphérique, et son application à la confection des Cartes marines et géographiques, par un Officier de l'Etat-Major de l'Armée du Rhin.
   MÉMOIRES de l'Institut de France. (Collection complète).
MILLOT. Tableau de l'Histoire romaine; Ouvrage posthume, orné de 48 figures qui en représentent les traits les plus in-
   MISSIESSY, Vice-Amiral. Installation des Vaisseaux, in-4, figures.

MISSIESSY, Vice-Amiral. Installation des Vaisseaux, in-4, figures.

21 fr.

MISSIESSY, Vice-Amiral. Installation des Vaisseaux, in-4, figures.

21 fr.

MOLLET. GNOMONIQUE GRAPHIQUE, ou Méthode élémentaire de TRACER LES CADRANS SOLAIRES sur toutes sortes de plans, sans aucun calcul, et en ne faisant usage que de la règle et du compas, in-8, 1815. avec pl., 1 fr. 80c.

Etudes du Ciel, ou Consaissance des Phénomènes astronomiques, in-8.

MONGE, Senateur. TRAITE ELEMENTAIRE DE STATIQUE, à l'usage des Ecoles de la Marine, in-8, 5 édit., revue par M. Hachette, Instituteur de l'Ecole Polytechnique, 1810; Ouvrage adopté par l'Université, pour l'enseignement dans les Lycées.

3 fr. 25 c.
            dans les Lycées.

—APPLICATION DE L'ANALYSE A LA GÉOMÉTRIE, à l'usage de l'Ecole Polytechnique, in-4., 4º éd., 1809. 16f. 50 c.

— GÉOMÉTRIE DESCRIPTIVE, Leçons données aux Écoles Normales, nouv. édit., avec un SUPPLÉMENT par
15 fr.
— GEOMETRIE DESCRIPTIVE, Lecons données aux Ecoles Normales, nouv. édit., avec un SUPPLEMENT par M. Hachette, in-4., 1811, 35 pl.

— Le Supplément à la Géométrie descriptive, par M. Hachette, 1 vol. in-4., avec 11 planches, se vend séparément, 6 fr.

— Description de l'Art de fabriquer les Canons, in-4., fig.

MONRO. Traité d'Ostéologie, traduit de l'anglais, 2 vol. grand in-folio, cartonnés.

MONROY. Architecture pratique, in-8.

MONTEIRO-DA-ROCHA, Commandeur de l'Ordre du Christ, Directeur de l'Observatoire de l'Université de Coimbre, etc. MEMOIRES SUR L'ASTRONOMIE PRATIOUE, trad. du portugais par M. de Mello, in-4., 1808.

7 fr. 50 c.

MONTUCLA. HISTOIRE DES MATHEMATHIQUES, dans laquelle on rend compte de leurs progrès depuis leur origine jusqu'à nos jours; où l'on expose le tablean et le développement des principales découvertes dans toutes les parties des Mathématiques; les contestations qui se sont élevées entre les Mathématiciens, et les principaux traits de la vie des plus célèbres. Nouvelle édition, considérablement augmentée, et prolongée jusqu'à l'époque actuelle, achevée et publiée par Jérôme de Lalande, 4 vol. in-4., svec fig.

MONTAL Cet Ouvrage est ce qui existe de plus complet jusqu'à présent sur cette partie.

MOROGUE. Tactique navale, ou Traité des Evolutions et des Signaux, in-4., avec fig.

NÉCESSAIRE, (le) ou Recueil complet de modèles de Lettres, à l'usage des personnes des deux sexes; suivi de la Relation d'un Voyage instructif et intéressant dans toutes les parties de l'Europe, 2 vol. in-12.

NÉVEU. Cours théorique et pratique des Opérations de Banque, et des nouveaux poids et mesures, in-8.

18 fr. NEWTON. Arithmétique universelle, traduite en français par M. Beaudeux, avec des Notes explicatives, 2 vol. in-4., 18 fr. Newton.
  14 planches.

14 planches.

15 planches.

16 planches.

17 planches.

18 planches.

19 planches.

19 planches.

20 fr.

21 planches.

22 planches.

23 planches.

24 planches.

25 planches.

26 planches.

26 planches.

26 planches.

26 planches.

27 planches.

28 planches.

29 planches.

20 planches.

21 planches.

22 planches.

23 planches.

24 planches.

25 planches.

26 planches.

26 planches.

27 planches.

28 planches.

29 planches.

20 planches.

21 planches.

22 planches.

23 planches.

24 planches.

26 planches.

26 planches.

27 planches.

28 planches.

29 planches.

20 planches.

21 planches.

22 planches.

23 planches.

24 planches.

25 planches.

26 planches.

26 planches.

27 planches.

28 planches.

29 planches.

20 planches.

21 planches.

22 planc
   de A. M. Legendre, in-8.
CEUVRES DE FRÉRET, de l'Académie des Inscriptions et Belles-Lettres, nouvelle édit., où l'on a réuni tous ses On-
20 fr.
   vrages, 20 vol. petit in-12.

(EUVRES DE PLUTARQUE, traduites par M. Amiot, avec des Notes de MM. Brottier et Vauvilliers; nouv. édit.,
  revue, corrigée et augmentée de la version de divers fragmens de Plutarque, par E. Clavier, 25 vol. in-8., ornés de figures en taille-douce, et de 136 médaillons d'après l'antique.

PAJUT-DES-CHARMES. L'Art du Blanchiment des toiles, fils et cotons de tous genres, 1 vol. in-8., avec 8 planches. 5 fr.
  PARISOT. TRAITÉ DU CALCUL CONJECTURAL, ou l'Art de raisonner sur les choses futures et incommues,
  in-4., 1810.

15 fr.

PERSON. RECUEIL DE MÉCANIQUE et description des Machines relatives à l'Agriculture et aux Arts, etc., 1 vol.
 in-4., avec 18 planches.

10 fr.

POISSON, Membre de l'Institut, Professeur de Mathématiques à l'École Polytechnique et à la Faculté des Sciences de Paris, et Membre adjoint du Bureau des Longitudes. TRAITE DE MECANIQUE, 2 vol. in-8. de plus de 500 pages
          chacun, avec 8 planches, 1811.
          (Ce Traité de Mécanique, le plus complet qui existe, a été adopté par l'Ecole Polytechnique pour l'instruction des Élèves. Il
   renferme, en outre, les notions de Statique élémentaire qu'on êxige des Candidats qui se destinent pour ladite École ou pour
  l'École Normale. )
```

```
POMMES. MANUEL DE L'INGÉNIEUR DU CADASTRE, contenant les connaissances théoriques et platiques utiles
 aux Geomètres en chefs et à leurs collaborateurs, pour exécuter la leve général du plan des communes du Royaume, conformément aux Instructions du Ministre des Finances, sur le Cadastre de France; précédé d'un Traité de Trigon-
matrie rectiligne, par A. A. Reynaud, t. vol. in-4., 1808.

PORTALIS fils. Du devoir de la Historien, de bien considerer le caractère et le génie de chaque siècle, in-8.

POULET-DELISLE, Professeur de Mathématiques au Lycée à Orléans. APPLICATION DE L'ALGEBRE A LA GEOMÉTRIE, in-8., 1806.

RECHERCHES ARITHMÉTIQUES, trad. du latin de Gauss, in-4.
                                                                                                                                                                                                                                                                                                                   18 fr.
 Précis d'une nouvelle Methode pour reduire à de simples Procédes analytiques la démonstration des principaux
         Théorèmes de Géométrie, in-4.
7 héorèmes de Géométrie, 18-4.

PUISSANT, Chef de Bataillon au Corps royal des Ingénieurs-Géographos. TRAITÉ DE GÉODÉSIE, ou Exposition des Méthodes astronomiques et trigonométriques, appliquées soit à la mesure de la Terre, soit à la confection du canevas des Cartes et des Plans, 1 vol. in-4., avec 8 planches, 1805.

TRAITE DE TOPOGRAPHIE, D'ARPENTAGE ET DE NIVELLEMENT, avec deux Supplémens contenant la théorie de la Projection des Cartes, in-4.; Ouvrage adopté par l'Université, pour l'ensuignement dans les Lycées. 18 fr.

Les deux Supplémens au Traité de Topographie, contenant la Theorie de la Projection des Cartes, se vendent se-
           - RECUEIL DE DIVERSES PROPOSITIONS DE GÉOMÉTRIE, résolues ou démontrées par l'Analyse, pour servir
     de suite au Traité élementaire de l'Application de l'Algèbre à la Géométrie de Lacroix, in-8:

2 fr.

Le même ouvrage, 2e édition, considérablement augmentée, et précédé d'un PRÉCIS SUR LE LEVÉ DES
      in-8., 1816.

PUJOULX. Lecons de Physique de l'École Polytechnique, im-8.

QUARTIER DE REDUCTION (nouveau) à l'usage des Marins, augmenté d'une Instruction abrégée sur la manière de s'en servir; grand Tableau in-4., très bien gravé, 1814. Prix de la douzaine en feuilles,

6 fr. 50 c.

RAMATUEL. Tuctique navale, in-4., avec planch.

30 fr.

31 fr.

32 fr.

33 fr.

34 Prix de la Mécanique céleste, et les dispositions de l'Institut, etc. Mémoire sur la formule barométrique de la Mécanique céleste, et les dispositions de l'Institut, etc.
RAMATUEL. Fuctique navale, in-4., avec planch.

RAMOND, Membre de l'Institut, etc. Mémoire sur la formule barométrique de la Mécanique céleste, et les dispositions de l'atmosphère qui en modifient les propriétés, etc., in-4., 1811.

RAYMOND, LETTRE A.M. VILLOTEAU, touchant ses vues sur la possibilité et l'utilité d'une théorie exacte des principes naturels de la Musique, etc.

— FSSA1 SUR LA DETERMINATION des bases physico-mathématiques de l'Art musical, etc., in-8.

REBOUL, Notes et Additions aux trois premières sections du Traité de Navigation de Besout, in-8.

Recueil de Tables utiles à la Navigation, traduit de l'anglais de Norie, par Violaine, in-8; 1815.

9 fr.

Revision (la) chrétienne méditée. 6 vol. in-12.
 RELIGION (h.) chrétienne méditée, 6 vol. in-12.

RESTAUT. Principes généraux et raisonnés de la Grammaire française, nouvelle édition, 7 gros vol. in-12.

REYNAUD, Exammateur des Canddats de l'École Polytechnique. GOURS DE MATHEMATIQUES, comprenant les
                                                                                                                                                                                                                                                                                                                   9 fr.
18 fr.
     Ouvrages suivans, iqui se vendent chacun separement; savoir : 10. ARITHMETIQUE, 6º édition, in-8.
      1º. ARFTHMETIQUE, 0º edition, in-0.
2º. ALGEBRE, 1ºº section, 3º édition, in-8., 1810.
3º. ALGEBRE, 2º section, in-8., 1810.
5º. ALGEBRE, 2º section, in-8., 1810.
4º. TRIGONOMETRIE ANALYTIQUE, précédée de la Théorie des Logarithmes, et suivie des TABLES DES LO-
                                                                                                                                                                                                                                                                                                          2 fr. 50 c.
      GARITHMES des Nombres et des Lignes trigonométriques de Lalande, etc., in-18.

5°. Arithmétique à l'usage des Ingénieurs du Cadastre, in-8.

6°. Manuel de l'Ingénieur du Cadastre, par MM. Pommiés et Reymand, in-4.

7°. Truité d'Arpentage de Lagrive, avec les Notes de Reynaud, in-8.
                                                                                                                                                                                                                                                                                                       2 fr. 50 c.
                                                                                                                                                                                                                                                                                                                      5 fr.
                                                                                                                                                                                                                                                                                                                   12 fr.
                                                                                                                                                                                                                                                                                                                      7 fr.
                                                                                                                     Notes sur Bezout, par Reynaud.
      8º. Arithmétique de Bezout, avec les Notes, 8º édition, in-8., 1816.
                                                                                                                                                                                                                                                                                                                       3 fr.
 5 ir.

9°. Géométrie de Bezout, avec les Notes, 2º édition, in-8., 1819.

10°. Algèbre et application de l'Aleèbre à la Geométrie de Bezout, avec les Notes, in-8., 1812.

5 fr.

RIVARD. TRAITE DE LA SPHERE ET DU CALENDRIER, septième édition (faite sur la sixième donnée par M. de Lalande), revue et augmentée de Notes et Additions, par M. Puissant, Officier supérieur du Génie, 1 vol. in-8., avec 3
 planches bien gravées, 1816.

ROBINS. Principes de Mathématiques, in-8.

ROMME. Tableau des Vents et des Marées, 2 vol. in-8.

ROSAL Elémens théoriques et pratiques du Calcul des Changes étrangers, etc., 1 vol. grand in-8., 1809.

6 fr.

ROSSEL. (DE) Calcul des Observations que l'an fait en mer; Ouvrage faisant partie de la Navigation de Bezout, le tout
 formant un vol. in-8., 1814.
ROY. Elemens d'Equitation militaire, nouvelle édition, in-12.
                                                                                                                                                                                                                                                                                                                      6 fr.
                                                                                                                                                                                                                                                                                                         2 fr. 50 c.
2 fr. 30 c. RUCHE PYRAMIDALE (la), ou Méthode de conduire les Abeilles de manière à en retirer chaque année un panier plein de cire ou de miel, outre au moins un essaim, etc., par Ducouédic, in-8., 2º édit., revue et considérablement augm., in-8. 3 fr. RUELLE. Opérations des Changes des principales places de l'Europe, in-8.

6 fr. SACOMBE. ELEMENS DE LA SCIENCE DES ACCOUCHEMENS, avec un Traité sur les Maladies des Femmes et
 des Enfans, un fort vol. in-8, avec portrait.

LA: LUCINIADE, poème en dix chants, sur-l'Art des Acconchemens, in-12.

SAINT-MARTIN. ECCE HOMO, vol. in-12.
                                                                                                                                                                                                                                                                                                        5 fr.
1 fr. 50 c.
SAINT-MARTIN. ECCE HOMO, vol. in-12.

LE NOUVEL HOMME! (Nous ne pouvous nous like:que dans Dieu lui-même, et nous comprendre que dans sa propre splendeur. Ecce Homo, page 19), vol. in-8.

LE CROCODILE, ou la guerre du Bien et du Mal, arrivée sons le règne de Louis XV, etc., vol. in-8.

SCOPPA, Employé extraendinaire à l'Université, Membre de l'Académie des Arcades, de celle del Bon Gusto de Palerme, etc. his VRAIS PRINCIPES DE LA VERSIFIGATION, développés par un Examen comparatif entre la LANGUE ITALIENNE FT LA FRANÇAISE.

On y examune et l'on y compare l'accent, qui est la source de l'harmônie des veis; la nature, la versification et la musique de ces deux langues.—On y fait voir l'analogie qui existe entr'elles.—On propose les règles pour composer des vers lyviques, et les moyens d'accelérer les progrès de la Musique en France, etc.

Trois gros vol. in-8., avec 56 planches de Musique gravée.

Le tome III, qui vient de paralire, contenant les 56 planches de Musique, se vend séparèment,

Tous les journaux, ainsi que l'Institut de France, out fait le plus grand éloge de cet Ouvrage.

Elémens de la Granmaire italienne, mis à la mortée des Enfant de 5 26 ans: Ouvrage en Dialognes, divisé en 36
                                                                                                                                                                                                                                                                                                          1 fr. 50 c.
          - L'iémens de la Grammaire italienne, mis à la portée des Enfans de 5 à 6 aus ; Ouvrage en Dialogues, divisé en 36
Lecons, etc., etc., in-12.
Seances des Écoles Normales, nouv. édit., 13 v. in-8. et 1 v. de planches.
```

```
RERVOIS. Essaisur un nouveau mode d'exposition des Principes du Calcul différentiel, etc., in-4., 1814.

SHAKSPEAR'S (Will.) Plays with the corrections and illustrations of various commenta ters. To wich a readded notes

Sam. Johnson and G. Steevens; a new edition, with a glossarial index, 23 vol. in-8., Basil., 1800—1802.

90 fr.

SIMPSON. (Thomas) Elémens d'Analyse pratique, augmentés d'un Abrégé d'Arithmétique, in-8.

Supplément audit Traité, par le même, in-4.

25 fr.

—Supplément audit Traité, par le même, in-4.

Cours complet d'Optique, traduit par Pezenas, 2 vol. in-4.

SPIESS. ESSAI DE RECHERCHES ÉLÉMENTAIRES SUR LES PREMIERS PRINCIPES DE LA RAISON, in-8., 1809.

STAINVILLE, Répétiteur à l'École Polytechnique, etc. MÉLANGES D'ANALYSE GÉOMÉTRIQUE ET ALGE-

BRIQUE, 1 gros vol. in-8., avec 8 planches, 1815.
  BRIQUE, 1 gros vol. in-8., avec 8 planches, 1815.
7 fr. 50 c.
STIRLING. ISAACI NEW TONI ENUMERATIO LINEARUM TERTII ORDINIS; sequitur illustratio
 ejusdem tractatûs, in-8.
SUZANNE, Docteur & Sciences, Professeur de Mathématiques au Lycée Charlemagne, à Paris. DE LA MANTERE
D'ETUDIER LES MATHEMATIQUES; Ouvrage destiné à servir de guide aux jeunes gens, à ceux sur-tout qui veulent
approfondir cette Science, ou qui aspirent à être admis à l'École Normale ou à l'École Polytechnique, 3 gros vol. in-8., avec
        figures.
Chaque volume se vend séparément, savoir:
—Première partie, PRECEPTES GENERAUX et ARITHMÉTIQUE, 2º édit., considérablement augm., in-8.
                                                                                                                                                                                                                                                                                                                                                            6 fr.
 — Première partie, PRECEPTES GENERAUA et ARII INVELLQUE, 2 etut., constituent augus, in S. 6 fr. Seconde partie, Algèbre, in S. 6 fr. 5 cc. 7 roisième partie, GEOMÉTRIE, in S. 60 fr. 5 cc. SYSTÈME DES CONNAISSANCES CHIMIQUES, PAR FOURCROY, 11 vol. in S. 60 fr. TABLES BAROMÉTRIQUES, servant à ramener à une température quelconque, broch. in S., 1812.

TÉDENAT, Proviseur du Lycée de Nismes. LEÇONS ÉLÉMENTAIRES D'ARITHMÉTIQUE ET D'ALGÈBRE, in S. 4 fr. 4 fr.
                                                                                                                                                                                                                                                                                                                                                           60 fr.
                                                                                                                                                                                                                                                                                                                                                              4 fr.
5 fr.
              LECONS ÉLÉMENTAIRES DE GÉOMÉTRIE, in-8.
5 fr.
LEÇONS ÉLÉMENTAIRES D'APPLICATION DE L'ALGÈBRE A LA GÉOMÉTRIE, et Calculy différentiel
  et intégral, 2 vol. in-8.

8 fr.

THÉVENEAU. COURS D'ARITHMÉTIQUE, à l'usage des Écoles centrales et du Commerce, in-8.

3 fr.

THIOUT ainé, maître Horloger à Paris. TRAITE D'HORLOGERIE THEORIQUE ET PRATIQUE, approuvé par
   l'Académie royale des Sciences, 2 vol. in-4., avec 91 planches, 1741.

VALMONT DE BOMARE. Dictionnaire raisonne universel d'Histoire naturelle, 15 vol. in-8., nouvelle édition.
  VEGA. Tabulæ logarithmico-trigonometricæ, 2 vol. in-8.

— Thesaurus et Logarithmorum completus, in-fol.

VIEL. Des fondemens des Bâtimens publics et particuliers, in-4.

VIOLAINE. RECUEIL DE TABLES UTILES A LA NAVIGATION, traduit de l'anglais de John William Norm,
        Professeur d'Hydrographie à Londres; précédé d'un Abrégé de Navigation pratique, contenant ce qui est nécessaire et indispensable à toutes les classes de Marins; enrichi de plus, d'un Vocabulaire des termes les plus usités dans la Marine; le tout extrait des meilleurs Auteurs français, anglais, espagnols, etc.; recueilli, mis en ordre, et augmenté de remarques et observations nouvelles, par P.-A. VIOLAINE, ex-Commissaire de Marine, Professeur de Mathématiques et de Navigation, etc.; y vol. in-8., 1815.
    Nota. Cet ouvrage est extremement utile pour les Marins.
VOIRON. HISTOIRE DE L'ASTRONOMIE depuis 1781 jusqu'à 1811, pour servir de suite à l'Histoire de l'Astronomie
    de Bailly, in-4., 1811.

Nota. Cet Ouvrage est indispensable aux personnes qui possèdent les 5 vol. de l'Astronomie de Bailly.

VOLNEY, Pair de France, Membre de l'Institut, etc. VUYAGE EN SYRIE ET EN ÉGYPTE pendant les années 1783, 84, 85; 4é édition, 2 vol. in-8., 1807.

LES RUINES, ou Méditation sur les Révolutions des Empires, 5e édition, revue et angmentée par l'Auteur, 1 vol. in-8., belle édition. 1812 avec figures.
          belle édition, 1817, avec figures.

LE MÊME OUVERLOE, traduit en espagnol, 1 vol. in-12, fig., 1817.

LE CONS D'HISTOIRE prononcées à l'École Normale en l'an III de la République française; Ouvrage élémentaire, contenant des vues neuves sur la nature de l'Histoire, etc., 1 vol. in-8., nouvelle édition, 1810.
               -Tablean du climat du sol des États-Unis d'Amérique, 2 vol. in-4. (rare).
-Simplification des Langues orientales, ou méthode facile d'apprendre les Langues arabe, persane et turque, in-8.
-RECHERCHES NOUVELLES SUR L'HISTOIRE ANCIENNE, 3 vol. in-8., 1815.
-Questions de Statistique à l'usage des Voyageurs, in-8., 1813.
-La Loi naturelle, ou Catéchieme du Citoyen français, 1 vol. in-18.
                                                                                                                                                                                                                                                                                                                                                            18 fr.
                                                                                                                                                                                                                                                                                                                                                             75 c.
25 c.
      VOYAGES du Professeur Pallas, 8 vol. in-8. et atlas.
     VUILIJER. Arithmétique découverte par un Enfant de dix ans, ou manière d'enseigner l'Arithmétique aux Enfans, in-8. 3 fr. WRONSKI, Officier supérieur au service de Russie. Introduction à la Philosophie des Mathématiques, et Technie de l'Algorithmie, in-4., 1811., 15 fr. (et les autres ouvrages du même Auteur.)
                Ouvrages qui ont paru depuis le mois de mai 1817 jusqu'au mois de juin 1819.
 ESSAI SUR L'ORIGINE DES CORPS ORGANISÉS ET INORGANISÉS, et sur quelques phenomènes de Physicologie animale et végétale, par J. B. FRAY, Commissaire-Ordonnateur des Guerres, Chevalier de la Légion-d'Honneur, Membre de plusieurs Sociétés savantes, etc., iu-8., 1817.

THEORIE DE L'UNIVERS, OU DE LA CAUSE PRIMITIVE DU MOUVEMENT, ET DE SES PRINCIPAUX EFFETS, par M. le Lieutenant-Général ALLIX, deuxième édition, 1 vol. in-8., 1818,

CONNAISSANCE DES TEMS, ou DES MOUVEMENS CRLESTES, à l'usage des Astronomes et des Navigateurs, publice par le Bureau des Longitudes de France, pour l'année 1820 et 1821, 1 vol. in-8.

Prix de chaque année, avec Additions, 6 fr., et saus Additions, 4 fr.

MAUDUIT, Professeur au Collège de France, LECONS DE GEOMÉTRIE THÉORIQUE ET PRATIQUE, nouvelle cdition, revue, corrigée et augmentée, 2 vol. in-8., avec 17 planches, 1817,

HAUY, Membre de l'Académie royale des Sciences, Professeur de Minéralogie au Jardin du Roi, etc., etc. TRAITE DES CARACTERES PHYSIQUES DES PIERRES PRÉCIEUSES, pour servir à leur détermination lorsqu'elles ont été taillees, 1 vol. in-8., 1817, avec 3 planch. en taille-douce.
    tailles, 1 vol. in-8., 1817, avec 3 planch. en taille-douce.

6 fr.

BOURDON, Professeur de Mathématiques au Collége Henri IV, à Paris, ÉLÉMENS D'ALGÈBRE, 1 v. in-8., 1817, 7 fr.

TREUIL, Professeur à l'École royale militaire de Saint-Cyr, ESSAI DE MATHÉMATIQUES, contenant quelques détails sur l'Arithmétique, l'Algèbre, la Gésmétrie et la Statique, in-8., 1819.

FRANCCEUR, Examinateur de l'École Polytechnique, Professeur à la Faculté des Sciences, etc. COURS COMPLET
```

DE MATHÉMATIQUES PURES, dédié à S. M. Alexandro Ist, Emperète de toutes les Russies, ouvrage destiné aux Elèves des Écoles Normale et Polytechnique, et aux Candidats qui se proposent à y être admis, séconde édition, retue et considérablement augmentée, 2 vol. in-8., ayec planehes, 1819.

FRANC. EUR. URANOGRAPHIE ou TRAITE ELÉMENTAIRE D'ASTRONOMIE à l'usage des personnes peu versées dans les Mathématiques, des Géographes, des Marins, des Ingénieurs, accompagné de planisphères, seconde édition, revue et considérablement augmentée, 1 vol. in-8., avec planches, 1818.

DELAMBRE, Membre de l'Institut, Professeur d'Astronomie au Collège royal de France, etc. HISTOIRE DE L'ASTRONOMIE DU MOYEN AGE, 1 vol. in-4., avec 17 pl. en taille-douce, 1819.

TRONOMIE ANCIENNE, 2 vol. in-4., avec 17 planch., 1817.

HISTOIRE DE L'ASTRONOMIE DU MOYEN AGE, 1 vol. in-4., avec 17 pl. en taille-douce, 1819.

25 fr.

TABLES ECLIPTIQUES DES SATELLITES DE JUPITER, faisant partie des Tables astronomiques du Bureau des Longitudes, d'après la Théorie de M. Laplace, et la totalité des Observations faites depuis 1662, jusqu'à l'an 1802, par M. Delambre, 1 vol. in-4., 1817.

HACHETTE, ancien Professeur à l'École Polytechnique, etc. TRAITÉ ÉLÉMENTAIRE DES MACHINES, seconde édition, considérablement augmentée, 1 vol. in-4., avec 32 planches, 1819.

VALLÉE, ancien Elève de l'École Polytechnique, Ingénieur au Corps royal des Ponts et Chaussées. TRAITÉ DE LA GEOMETRIE DESCRIPTIVE, dédié à M. Monge (Ouvrage sur lequel l'Institut de France a fait un rapport avantageux), 1 vol. in-4., avec un atlas de 60 planches, 1819. GEOMET RIF, DESCRIFTIVE, decle à M. Pronge (Ouvrage sur lequel l'Institut de France à lait un rapport avanuageus),
1 val. in-4., avec un atles de 60 planches, 1819.

PUISSANT, Chef de bataillon au Corps des Ingénieurs-Géographes. TRAITE DE GÉODÉSIE, on exposition des Méthodes astronomiques et trigonométriques appliquées soit à la mesure de la terre, soit à la confection des canevas des Cartes et des Plans; nouvelle édition, considerablement augmentée, 2 vol. in-4., avec 13 planches, 1819.

PRONY (DE), Membre de l'Institut. LECONS DE MÉCANIQUE ANALYTIQUE données à l'École Polytechnique, 2 vol. in-4., 1815.

30 fr.

LEGENDRE, Membre de l'Institut, etc. EXERCICES DE CALCUL INTÉGRAL, avec les Supplémens, 3 vol. in-4., 65 fr.

JOURNAL DE PHYSIQUE, DE CHIMIE. D'HISTOIRE NATURELLE ET DES ARTS, Ouvrage périodique qui parate tous les mois par calier de d'x seullées d'impression, avec des planches en taille-douce; ce qui sonne a vol. par an, sorsiat in-f.; par seu J.-C. DELAMETHERIE, Professeur au Collège de France, et continué par M. H. DE BLAINVILLE, Docteur en Medecine de la Faculté de Paris, Professeur de Zoologie, d'Anatomie et de Physiologie comparée, à la Faculté des Sciences, suppléant de M. Cuvier au Jardin du Roi et au Collège de France, Membre et Secrétaire de la Société Philomatique, étc., etc.

Prix de l'abonnement pour Paris, 27 fr. pour un an, 33 fr. pour les départemens, et 39 fr. pour l'étranger, ledit Journal rendu france de prote par la poète de mois en mois

Prix de l'abonnement pour Paris, 27 fr. pour un an, 33 fr. pour les départemens, et 39 fr. pour l'étranger, ledit Journal rendu franc de port par la poète de mois en mois.

On trouve à là même adresse des Collections complètes, des volumes, et même des Numéros séparés.

Lie prix de chacun des volumes qui ont paru depuis le tome 50 jusqu'à ce jour, est de 18 fr.; ceux antérieurs ne coutent que va fr.

Dépais la mort de M. Delanétherie, M. H. de Blainville, Docteur en Médecine de la Faculté de Paris, etc., esc., esc principal Rédacteur du Journal de Physique, de Chimie, d'Histoire naturelle et des Arts. Ce Journal, qui existe depuis Pamée 1771, sans interruption, et dont la Collection importante forme maintenant 86 volumes, se compose chaque mois d'un câhier de dix femilles d'impression in-4, avec une ou deux planches en taille-douce, ce qui donne pour l'année deux volumes d'environ 500 pages chacun. Il est, comme l'indiqué son titre, consacré à toutes les parties des sciences naturelles, y compris l'Astronomie et la haute Physique, en sorte qu'il offre une très grande variété. Chaque année, dans un Discours preliminaire étendu, le Rédacteur retrace brièvement l'histoire des découvertes de l'année précédente, et de la marche suive dans ces diferentes sciences, tant en France qu'à l'étranger, de manière à pouvoir mettre ses lecteurs au courant de tout ce qui a été fait dans les différentes branches des connaissances humaines. La plus grande partie de chaque numéro est consacrée à la publication de Dissertations et de Mémoires entièrement nouveaux, ou traduits littéralement des meilleurs Journaux étrangers, dans toutes les langues; et le teste, sous le titre de nouvelles scientifiques, se compose d'un extrait des découvertes les plus intéressantes, rangées sous les titres Astronomie, Physique, Chimie, Minéralogie et Géologie, Botanique, Anatomie et Physiologie animales, et enfin, Arts et Biographie.

ANNALES DE MATHEMATIQUES PURES ET APPLIQUEES, rédigées par M.-J.-D. GERGONNE, Professeur de Maluématiques et d'Astro

Mathematiques et d'Astronome a la racute des Sciences de Montpemer, etc.; Ouvrage personaux, Amportant par Cahier de 4 à 5 (cuilles d'impression, in-4°. Il a paru jusqu'à ce jour hu tvolumes de cet Ouvrage, qui renferme beaucoup de Mémoires curienx sur les Sciences Physiques et Mathématiques, et sur les parties qui en dependent.

Prix des huitvolumes, 135 fr. Chaque volume separe se vend 18 fr.

Le prix de l'abonnement annuel est de 21 fr. pour la France, et de 24 fr. pour l'étranger; le tout franc de port.

Ouvrages sous presse.

DELAMBRE, Membre de l'Institut, etc. HISTOIRE DE L'ASTRONOMIE MODERNE, 2 vol. in-4., avec planch. LACROIX, Membre de l'Institut; etc. TRAITÉ COMPLET DE CALCUL DIFFERENTIEL ET DE CALCUL INTECRAL, tome troisième et dernier, 1 vol. in-4.

BIOT et ARAGO, Membres de l'Institut. VOYAGE ASTRONOMIQUE FAIT EN ESPAGNE PAR ORDRE DU BUREAU DES LONGITUDES, etc.; Ouvrage formant le tome IV de la Base du Système métrique de M. Delambre,

PUISANT, Chef de bataillon au Corps royal des Ingénieurs-Géographes, TRAITÉ COMPLET DE TOPOGRAPHIE, D'ABPENTAGE ET DE NIVELLEMENT, seconde édition considérablement augmentée, 1 vol. in-64, avec planches. REYNAUD, Exammateur de l'École Polytechnique, APPLICATION DE L'ALGEBRE À LA GEOMETRIE, etc., 1 vol in-8., avec planches.

A Paris, de l'Imprimetie de Mine Ve COURCIER, rue du Justinet, no 12.

